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Abstract
�is thesis is a summary of existing and upcoming publications [168, 194,
204, 273, 274, 275, 288, 404], with a focus on high order methods in numeri-
cal relativity and general relativistic �ows. �e text is structed in �ve chap-
ters. In the �rst three ones, the ADER-DG technique and its application to
the Einstein-Euler equations is introduced. Novel formulations for both the
Einstein equations in the 3+1 split as well as the general relativistic mag-
netohydrodynamics (GRMHD) had to be derived. �e �rst order conformal
and covariant Z4 formulation of Einstein equations (FO-CCZ4) is proposed
and proven to be strongly hyperbolic. Together with the �uid equations of
general relativistic magnetohydodynamics (GRMHD), a number of bench-
mark scenarios is presented to show both the correctness of the PDEs as
well as the applicability of the numerical scheme.
As an application in astrophysics, a general-relativistic study of the treshold
mass for a prompt-collapse of a binary neutron star merger with realistic
nuclear equation of states has been carried out. A nonlinear universal re-
lation between the treshold mass and the maximum compactness is found.
Furthermore, by taking recent measurements of GW170817 into account,
lower limits on the stellar radii for any mass can be given.
Furthermore, an (unpaired) work in quantum mechanical black hole engi-
neering is presented. Higher dimensional extensions of generalized Heisen-
berg’s uncertainty principle (GUP) are studied. A number of new phe-
nomenology is found, such as the existence of a conical singularity which
mimics the e�ect of a gravitational monopole on short scale and that of a
Schwarzschild black hole at a large scale, as well as oscillating Hawking
temperatures which we call “lighthouse e�ect”. All results are consistent
with the self complete paradigm and a cold evaporation endpoint remnant.

�is document is wri�en with LATEX and a style inspired by the books of the data visualization pioneer Edward
Tufte. In physics, his style was �rst adopted in the textbooks of Richard Feynman. It is characterized by the
large margin column and the �at structure, among others. I chose this format to include a lot of illustrating �gures
and supplementary comments. Deeply nested hierarchies are omi�ed.

�e text and �gures (see page 136 for a list) in this work are licensed under a Creative Commons A�ribution-
ShareAlike license (CC BY-SA).

https://creativecommons.org/licenses/by-sa/4.0/
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Zusammenfassung

Schwarze Löcher und Gravitationswellen gehören zu den faszinierenden Vorhersagen der allgemeinen
Relativitätstheorie. Schwarze Löcher gibt es auf fast jeder Längenskala und seit einigen Jahren gibt es
mehr und mehr Möglichkeiten, sie zu messen. Die größten schwarzen Löcher werden supermassereich
genannt, Millionen von Sonnenmassen schwer werden sie im Zentrum von jeder Galaxie vermutet.
Das Event Horizon Telescope hat zum Ziel, die Photonensphäre des Objekts Sagi�arius A* zu messen,
welches als supermassereiches schwarzes Loch im Zentrum der Milchstraße vermutet wird. Das Laser-
Interferometer-Gravitationswellen-Observatorium (LIGO) wiederum konnte bereits 2016 zum ersten
mal Gravitationswellen direkt beobachten, die durch den Kollaps zweier stellarer schwarzer Löcher
(jeweils ca 20-30 Sonnenmassen schwer) entstanden. Dafür erhielten drei LIGO-Physiker 2017 den
Nobelpreis.
Ebenfalls wurden von LIGO und dem europäischen Pendant Virgo die Gravitationswellen von der
Verschmelzung zweier Neutronensterne gemessen. Neutronensterne gehören zu den kompaktesten
astrophysikalischen Objekten, mit einer Ausdehnung von wenigen Kilometern und einer mit der Son-
ne vergleichbaren Masse. Die zentrale Massendichte in Neutronensternen erreicht ein Vielfaches der
nuklearen Sä�igungsdichte. Damit sind Neutronensterne ein Ort in der Natur, in dem sich außer-
gewöhnliche Materiezustände vor�nden lassen, wie etwa das �ark-Gluon-Plasma. Mit der Beobach-
tung von Kollisionen solcher Sterne, insbesondere über mehrere Kanäle (Radiowellen verschiedener
Spektren sowie Gravitationswellen) können erstmals präzise Aussagen über die Bescha�enheit dieser
Sterne gemacht werden.
Die Messung dieser Gravitationswellen ist nicht nur eine experimentelle Meisterleistung, sondern un-
ter anderem auch dem Fortschri� der computerbasierten Lösung von Einsteins nichtlinearen Feldglei-
chungen zu verdanken. Die numerische Relativitätstheorie hat in den letzten 15 Jahren gewaltige Fort-
schri�e gemacht, die nicht bloß einer allgemein gestiegenen verfügbaren Rechenleistung zu verdanken
sind, sondern vor allem dem besseren Verständnis der wesentlichen Freiheitsgrade der allgemeinen
Relativitätstheorie, der trickreichen Reformulierung der Feldgleichungen als hyperbolische partielle
Di�erentialgleichungen im Rahmen eines wohlde�nierten klassischen Anfangs-Randwertproblems,
dem Verständnis ihrer Eigenstruktur sowie nicht zuletzt besser konvergierenden numerischen Me-
thoden, welche allgemein unter dem engl. Stichwort “high order methods” zusammengefasst werden.
Erst seit 2005 ist es nach jahrzehntelanger Forschung möglich, schwarze Löcher in Doppelsystemen
in einer Computersimulation stabil in der Zeit zu entwickeln und dabei die Abstrahlung von Gravi-
tationswellen zu beobachten. Auf ganzen Datenbanken solcher Wellenvorhersagen fußt die experi-
mentelle Messung von Gravitationswellen, denn ohne diesen wäre dem verrauschten Signal nichts zu
entnehmen.

Methoden zur kommunikationsvermeidende Zeitentwicklung

Daher entsteht ein enormer Bedarf an einer weiteren Verbesserung der Vorhersagekra� von Compu-
tersimulationen. Informatiker stehen vor einem Problem: Es steht zwar immer mehr Rechenleistung
für die Wissenscha� zur Verfügung — die Rede ist von einem Exaskalencomputer, also einem Rechner,
der 1018 Grundrechenarten pro Sekunde bewältigt — allerdings werden bestehende Simulationspro-
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gramme gnadenlos scheitern, diese neue Rechnergeneration, die rein rechnerisch in der Lage sein soll,
ein menschliches Gehirn zu simulieren, dabei allerdings aus hunderten millionen Prozessorkernen be-
stehen, voll auszuschöpfen. Im Rahmen dieser Dissertation wurden daher neuartige Methoden zum
Lösen der hyperbolischen Zeitentwicklung, die von Anfang an die Kommunikation innerhalb eines
Supercomputers auf ein Minimum beschränkt, auf astrophysikalische Probleme angewandt. Diese so-
genannten diskontinuierliche Galerkin-Verfahren versprechen darüber hinaus eine hohe Konvergen-
zordnung bei, verglichen mit herkömmlichen Methoden, niedrigem Stromverbrauch. Im Gegenteil
zu herkömmlichen Finite Volumen-Verfahren wird die räumliche Simulationsdomäne dabei in eine
Anzahl von unabhängig voneinander (daher “diskontinuierlich”) zeitentwickelten Zellen unterteilt,
welche ihrerseits Polynome beherbergen, die die physikalischen Felder beschreiben.
Um das Gibbs’sche Phänomen bei physikalischen Unstetigkeitsstellen (etwa Singularitäten der Raum-
zeit oder hydrodynamischen Schocks) zu verhindern, fällt das Schema als Prädiktor-Korrektor-Verfah-
ren bei Unstetigkeit lokal auf ein klassisches robustes Finite Volumen-Verfahren zurück. Es verbindet
damit die Erprobtheit herkömmlicher Methoden mit den Vorteilen von diskontinuierlichen Galerkin-
Verfahren. Im Rahmen dieser Dissertation wurden unter anderem diese numerischen Methoden in
den neuartigen “ExaHyPE”-Code (engl., für “an Exascale Hyperbolic PDE Engine”) eingebaut, einem
Computerprogramm zur Lösung beliebig vieler gekoppelter hyperbolischen Di�erentialgleichungen,
welches den hohen Anforderungen der zukün�igen Exaskalencomputer gerecht werden soll. Mit Bei-
spielanwendungen aus der Seismologie (Erdbebenvorhersagen) und der Astrophysik (Neutronenstern-
verschmelzungen) soll ExaHyPE ab Ende 2019 der Ö�entlichkeit zugänglich sein.

Die konform kovariante Formulierung der Einsteingleichungen in erster Ordnung

Im Rahmen dieser Arbeit wurde eine neue Formulierung der Einsteingleichungen hergeleitet, die aus
59 gekoppelten nichtlinearen Di�erentialgleichungen besteht. Das partielle Di�erentialgleichungssy-
stem ist erste Ordnung in Zeit und Raum. Die Motivation war dabei, eine streng hyperbolische For-
mulierung der Einsteingleichungen zu �nden, die für eine numerische Zeitentwicklung mit den oben
vorgestellten diskontinuierliche Galerkin-Verfahren geeignet ist.
Diese neue Formulierung, die den Namen “FO-CCZ4” trägt, geht als Umschreibung der CCZ4-Gleichung-
en zurück, der konform kovarianter Z4-Formulierung (engl. “conformally covariant Z4”) der Einstein-
gleichungen. Diese erhält man, in dem die vier Eichfreiheitsgrade der Einsteingleichungen im Rahmen
der Cauchy-Anfangswert-Formulierung (ADM-Split) separiert und �xiert werden. Die erstmals 2010
formulierte Z4-Variante stellt die Kovarianz dieser Eichtheorie sicher, in dem sie die Hamiltonschen
Zwangsbedingungen zusätzlich als dynamische Zustandsgröße entwickelt. Auf diese Weise wird die
Formulierung um ein selbstheilendes Element ergänzt, welches numerische Fehler korrigiert und den
Zustandsvektor des Gleichungssystems zu einem physikalischen Zustand konvergieren lässt.
Im Zuge weiterer Umschreibungen werden die konformen Freiheitsgerade separiert und transvers-
spurlose Tensordichten zeitentwickelt, welche zu einer weiteren Stabilisierung des Systems beitragen.
Sie erlauben es, hyperbolische (also insbesondere zeitabhängige) singularitätsvermeidende Eich�xie-
rungen vorzunehmen, die die Variation des räumlichen Koordinatenvolumens minimal halten (diese
bewährten Eich�xierungen heißen “Bona-Massó Slicing” und “Gamma Driver”). Die auf diese Weise
beschriebene konforme und kovariante Z4-Formulierung der Einsteingleichungen wurden anschlie-
ßend in ein Di�erentialgleichungssystem erster Ordnung umgeschrieben. Dabei wurde eine approxi-
mative Symmetrisierung der dünnbesetzten Systemmatrix erreicht, in dem der Satz von Schwarz zur
Symmetrisierung von Ableitungen (Ordering Constraints) rigoros angewendet wurde, ohne dabei das
Entstehen von Jordan-Blöcken zu erlauben. Es konnte gezeigt werden, dass das konform-kovariante
Z4-System in den üblichen Eich�xierungen nicht nur streng hyperbolisch ist, sondern sogar die Dy-
namik der vierdimensionalen Metrik (in der konformen ADM-Formulierung zusammengesetzt aus
dem sogenannten Lapse-Skalar, Shi�-Vektor, der räumlichen Metrik und dem konformen Faktor) als
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gewöhnliche Di�erentialgleichungen entkoppeln. Ferner sind alle Felder linear degeneriert, was zur
Folge hat, dass das System keine “gravitativen Schockwellen” entwickeln kann. Bis auf Orte unend-
licher Krümmung (Singularitäten) sind die in dieser Formulierung zeitentwickelten Felder, welch die
Raumzeit beschreiben, also immer kontinuierlich.
Die konform kovarianten Z4-Formulierung in erster Ordnung (engl. �rst order conformally covariant
Z4, FO-CCZ4) ist mit ihren 59 gekoppelten nichtlinearen Di�erentialgleichungen erheblich komple-
xer als die Einsteingleichungen (üblicherweise geschrieben als 16 gekoppelte Di�erentialgleichungen,
aber nur 10 Freiheitsgrade beschreibend). Trotzdem ist ihr Einsatz okonomisch, da die Formulierung in
erster Ordnung erlaubt, das Gleichungssystem räumlich diskret mit pfadkonservativen Methoden zu
integrieren. Ähnlich wie in der Fluiddynamik werden dabei alle charakteristischen Wellen des Systems
vom numerischen Schema “erfasst”. Dies äußert sich bei der zeitentwicklung stationärer Raumzeiten
etwa dadurch, dass die Lösung besser erhalten wird als mit herkömmlichen Methoden.
Zur Demonstration der Korrektheit der Formulierung sowie ihrer Lösbarkeit mit den dargestellten
numerischen Schemata wurden einige Standardtests der numerischen Relativitätstheorie erfolgreich
demonstriert, darunter linearisierte Gravitationswellen-Tests, Stabilitätstests einer gestörten Minkow-
skimetrik, Zeitentwicklung nichtlinearer “Eichwellen”, Konvergenztests zur Demonstration der Kon-
vergenzordnung bei der Zeitentwicklung der statischen Schwarzschild-Raumzeit und der stationären
Kerr-Raumzeit, sowie zuletzt die numerische Lösung des Zweikörperproblems (Verschmelzung zweier
schwarzer Löcher mithilfe der Punkturmethode).

Relativistische Magnetohydrodynamik im nichtkonservativen Split

Die relativistische Hydrodynamik ist eine erfolgreiche �eorie, um die Materie (ausgedehnter) kom-
pakter Objekte zu beschreiben. Zur Beschreibung von E�ekten, in denen elektrodynamische Wechsel-
wirkungen eine wichtige Rolle spielen, ist zudem die allgemein relativistische Magnetohydrodynamik
(engl. GRMHD, für “general relativistic magnetohydrodynamics”) eine anerkannte e�ektive �eorie.
In ihrer idealen Näherung beschreibt diese Gleichung die relativistische Dynamik eines Fluides, wel-
ches durch seine Bewegung ein Magnetfeld induziert und mit diesem auch wechselwirkt. Auf diese
Weise lassen sich eine Vielzahl astrophysikalischer Phänomene beschreiben, etwa Jets, Pulsare und
Gammastrahlenblitze.
Neben den Einsteingleichungen wurden auch die Gleichungen der allgemein relativistischen Magne-
tohydrodynamik in eine �usskonservative Form gebracht, in der Erhaltungsterme und nichtkonserva-
tive Flüsse getrennt werden. Auf diese Weise ist eine pfadkonservative Integration aller Flüsse möglich,
was zu einer wesentlich exakteren Beschreibung des diskretisierten Problems führt als herkömmliche
Methoden.
In Standard-Benchmarks wurde die neue Formulierung der allgemein relativistischen Magnetohy-
drodynamik auf stationären gekrümmten Hintergrundräumen (Cowling-Näherung) mithilfe der oben
eingeführten diskontinuierlichen Galerkin-Verfahren demonstriert. Dabei wurden als kontinuierliche
Flüsse in der Schwarzschild-Raumzeit seperat die Dynamik im Inneren eines Torus, die Akkretion ei-
nes elektrisch neutralen sowie die Akkretion eines magnetohydrodynamisch wechselwirkenden Flui-
des demonstriert. Als nichtkontinuierliche speziell-relativistische Flüsse wurden einige akademische
Beispiele präsentiert, etwa die Lösung eindimensionaler Riemannprobleme in gekrümmten Hinter-
grundräumen, die Zeitentwicklung einer zweidimensionalen magnetischen Schleife, einer magneti-
schen Druckwelle, sowie des Orszag-Tang-Vortexes. Als nichtkontinuierliche allgemein-relativistische
Flüsse werden Raumzeiten einer Torus-Schwarzes Loch-Kon�guration simuliert und ferner vorläu�ge
Ergebnisse auf die Zeitentwicklung eines Neutronensterns (TOV-Lösung, nach Tolmann-Oppenheimer-
Volkho�) präsentiert.
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Wie lange überlebt ein hypermassiver Neutronenstern?

Ein weiteres Projekt, welches in der vorliegenden Dissertation beschrieben wird, ist eine Anwen-
dung obiger Methoden, also der numerischen Zeitintegration des gekoppelten Einstein-Euler-Systems.
Dabei wurde das Szenario eines “verzögerten Kollapses” bei der Vereinigung zweier Neutronenster-
ne untersucht. Es wurden quantitative Kriterien entwickelt, um einen sofortigen Kollaps zu einem
schwarzen Loch von der Entstehung eines metastabilen hypermassiven Neutronensternes zu unter-
scheiden. Als Unterscheidungskriterion für das Szenario des “verzögerten Kollapses” kommt dabei die
Masse der Raumzeit bzw. der Konstituenten zum Tragen. Oberhalb einer kritischen Masse kommt es
zum prompten Kollaps zu einem schwarzen Loch und unterhalb zu einem verzögerten Kollaps. Dazu
wurde eine Parameterstudie durchgeführt, bei der für eine Vielzahl an realistischen nuklearen Zu-
standsgleichungen eine Menge an Anfangswertprobleme gebildet wurden, die sich durch die Masse
ihrer Konstituenten unterscheiden. Um Anfangswerte für die Einstein-Euler-Gleichungen zu erhal-
ten, die die Raumzeit eines Doppelsternsystems im stark wechselwirkenden Endstadium beschreiben,
müssen elliptische Gleichungen gelöst werden. Iterative Anfangswertcodes �nden dazu zunächst die
Lösung der TOV-Gleichungen und fügen diesen dann schri�weise Drehmoment hinzu, während der
Abstand der Sterne verringert wird. Die erzeugten Anfangswerte werden dann mit den obengenann-
ten hyperbolischen Methoden zeitentwickelt bis sich ein schwarzes Loch gebildet hat.
Die Überlebenszeit des Kollisionsproduktes ist de�niert als die Koordinatenzeit, die zwischen Ver-
schmelzung und Kollaps zum schwarzen Loch verstrichen ist. Anhang der Simulationsdaten können
eine Vielzahl an Kriterien herangezogen werden, um Verschmelzung und Kollaps zu de�nieren, so zum
Beispiel über den Koordinatenabstand der Neutronensterne, den Peak des Gravitationswellensignals,
einem kritischen Wert für das globale Maximum der Ruhemassendichte oder das globale Minimum
des e�ektiven Potentials. Im Rahmen der Untersuchung stellte sich heraus, dass die dynamische Eich-
�xierung dank ihrer Eigenscha�, die Koordinaten aus dem Gravitationspotential (her)rauszutreiben,
sowohl für die De�nition des Zeitpunkts der Verschmelzung als auch des Kollapses am besten geeignet
ist.
Die Überlebenszeiten, die nun jedem einzelnen Computerexperiment (einem Doppelneutronenstern-
system mit gewisser Masse und Zustandsgleichung) zugewiesen werden konnte, wurden für jede Zu-
standsgleichung die Systemmassen zu einer charakteristischen Zeit extrapoliert, die der Eigenzeit beim
freien Kollaps eines TOV-Sternes bis zur Entstehung eines schwarzen Loches entspricht. Die auf diese
Weise de�nierten kritischen Massen zeigen eine Korrelation zu den TOV-Massen der Zustandsglei-
chung. Vor allem lassen sich aber Zusammenhänge zwischen den kritischen Massen aller untersuch-
ten Zustandsgleichungen herstellen, welche erlauben für eine neue Zustandsgleichung die kritische
Masse anhand ihrer TOV-Eigenscha�en vorherzusagen. Zuguterletzt lassen sich die Zahlen auch unter
Zuhilfenahme von echten Gravitationswellenmessungen benutzen, um den minimalen Radius eines
Neutronensterns einzuschränken. Mithilfe der Experimentellen Daten von GW170817 wurde der mi-
nimale Radius R = 9.74(±0.1)km ermi�elt.

Die Raumzeit eines quantenmechanischen schwarzen Loches

Als letztes Projekt ist dieser Monographie ein Projekt aus dem Bereich der �antengravitation bei-
gelegt, welches die Eingangs aufgelisteten Skalen von schwarzen Löchern komple�ieren: Die Model-
lierung der Metriken von mikro-schwarzen Löchern. Es wird dabei eine stringtheoretisch motivierte
impulsabhängige Modi�kation der Heisenbergschen Unschärferelation eingeführt, welche als e�ek-
tive �eorie die erste Ordnung einer quantenmechanischen Gravitationstheorie beschreiben kann.
Die neuen Kommutatorrelationen erllauben exakte Impulsoperatoren, aber erzwingen eine minimale
Länge im Ortsraum. Die Dirac-Deltaquelle der Schwarzschild-Metrik lässt sich somit als Fouriertrans-
formierte der ebenen Welle (im Impulsraum) nicht mehr exakt (im Ortsraum) darstellen und bewirkt
damit eine Verschmierung / Delokalisierung des gravitativen Potentials. Berechnet man die Hawking-
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Temperatur dieses quantenmechanisch modi�zierten schwarzen Loches, �ndet man einen kalten Eva-
porationsendpunkt, welcher sich im selbstvollständigen Paradigma mit der Planck-Skala in Verbin-
dung setzen lässt. Dieses stabile “kleinstmögliche” schwarze Loch ist dabei lediglich das Ergebnis der
Tatsache, dass kleine schwarze Löcher signi�kant viel Energie durch Hawkingstrahlung verlieren. Das
stabile Überbleibsel eignet sich etwa als Kandidat zur Beschreibung von dunkler Materie.
Im Rahmen der Dissertation wurden mögliche Erweiterungen der �eorie der modi�zierten Heisen-
bergschen Unschärferelation auf große Extradimensionen untersucht. Ein solches “Extradimensions”-
Szenario könnte das schwache Hierarchieproblem des Standardmodells lösen und birgt die einzige
Chance, dass schwarze Löcher im Teilchenbeschleuniger gemessen werden können. Gedankenexperi-
mente suggerieren allerdings verschiedene Möglichkeiten, welche algebraische Form die Unschärfere-
lation in höheren Dimensionen haben sollte. Zwei Formulierungen stechen dabei heraus: Zum einen
eine, welche in einer Extradimension (also 4+1-dimensionaler Raumzeit) eine konische Singularität
aufweist. Dies ist die erste exakte Lösung einer Raumzeit, welche auf kurzen Skalen wie ein gravita-
tiver Monopol aussieht und auf großen Skalen wie ein schwarzes Loch.
Eine weitere, modi�zierte Unschärferelation wiederum reproduziert in jeder Dimension die gleiche
Impulsraum-Regularisierung, verfügt darüber hinaus aber über einen neuen komplexeren thermody-
namischen Zustandsraum. Dabei handelt es sich um das Phänomen, dass das schwarze Loch kurz
vor seiner Verdampfung auf der Planck-Skala Temperaturoszillationen aufweist, welche mit wieder-
holten Phasenübergängen zwischen negativer und positiver Wärmekapazität einhergehen. Die damit
verbundene stetig veränderte Luminosität verleitet zur Prägung des Begri�es “Leuch�urm-E�ekt”.
Darüberhinaus gibt es mehrere stabile Evaporationsendpunkte, welche für kleine schwarze Löcher
(enstanden aus dem quantenmechanischen Regime) unterschiedliche minimale Längen vorhersagen
als für große schwarze Löcher (entstanden aus dem semiklassischen Regime).
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Introduction

chapter

0
Shortly a�er the beginning of my PhD position in theoretical astrophysics end of 2015, the �rst direct observation
of gravitational waves was made, where the merger of 36M� and 29M� black holes to a single 62M� black hole
was measured. �is remarkable event identi�ed as GW150914 [1] prove the existence of gravitational waves, of
stellar mass binary black hole systems and heralded a new era of gravitational wave multimessenger astronomy.
�e breakthrough gained international a�ention due to the 2017 Nobel prize awarding to Weiss, Barish and �orne
“for decisive contributions to the LIGO detector and the observation of gravitational waves”.

In 2017 the �rst direct observation of two merging neutron stars was made, with constituent neutron star masses
up to 1.6M� and a merger mass of 2.74M�. �is event, identi�ed as GW170817 [435], was followed by a short
gamma-ray burst and a number of other observations in the electromagnetic spectrum.

Due to their bad signal to noise ratio, gravitational wave interferometry depends on precomputed gravitational
wave-forms. �ese wave-forms are computed by large scale perturbative but especially numerical approaches to
general relativity. Numerical relativity had emerged as a powerful tool for the study of astrophysical systems,
following the breakthrough calculations of the merger of binary “moving puncture” black holes in mid-2000 [45, 46,
104, 117, 233, 363].

0.1 Numerical schemes for the Exascale era

�e interest for high accuracy simulations of general-relativistic spacetimes has only been strengthened by the ob-
servational breakthrought. �ere is a need for stable and accurate methods which can exploit the computational
ressources available. Chapter I on page 17 is a mathematical one which purely concentrates on numerical aspects
in hyperbolic partial di�erential equations and introduces a sophisticated numerical scheme with arbitrary con-
vergence order in time and space. At the same time, it is communication avoiding and therefore suitable for the
upcoming generation of exascale computers — machines which can compute 1018 basic arithmetic operations per
second. �e scheme was used in the coauthored publications [168, 194] as well as in [135, 404]. Particular challenges
in computer science/high performance computing (HPC) are discussed and the ExaHyPE code is introduced, a dy-
namical adaptive mesh re�nement (AMR) code which uses �nite state machines for determining the control �ow
and take o� the control from the user. ExaHyPE can solve a speci�c class of hyperbolic partial di�erential equations
(PDEs) and will be open sourced end of 2019.

Discontinuous Galerkin methods belong to the family of �nite-element methods which consider the numerical
approximation of a weak formulation of the governing system of partial di�erential equations over a set of non-
overlapping elements. �e discrete solution space is restricted to the space of piecewise polynomials of maximum
degree N ≥ 0 and the degrees of freedom (i.e., the expansion coe�cients) of the chosen polynomial basis are
directly evolved in time. In particular, in the DG formulation the numerical solution is allowed to be discontinuous
at element interfaces. In the last twenty years, DG methods became increasingly popular mainly because of four
a�ractive properties:

(i) nonlinear L2 stability (See Appendix A1.2 for standard de�nitions such as “L2”) has been proven for general
nonlinear scalar conservation laws [256];

(ii) arbitrary high order of accuracy can be easily achieved for smooth solutions by simply increasing the polyno-
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mial degree N of the chosen basis functions;

(iii) high parallel scalability makes DG methods be�er suited for large-scale simulations even on general unstruc-
tured meshes when compared with high-order �nite-di�erence or �nite-volume methods;

(iv) high-order DG methods are not very dissipative and dispersive, even when compared with high-order �nite-
volume and �nite-di�erence schemes and are thus essential for accurate long-term simulations.

0.2 A novel hyperbolic formulation of Einsteins Equations

Chapter II on page 43 concentrates on general relativity and casts these equations in the mathematical framework
proposed in the the previous chapter. In fact, the development of hyperbolic formulations of the Einstein equations
that allow for long-term simulations of generic spacetimes, including the ones encompassing the physical singu-
larities arising in the presence of black holes, has been of great importance in numerical relativity. �e �rst step
in this direction has been the derivation of the Arnowi�-Deser-Misner (ADM) formulation. While this formulation
splits time and space and presents general relativity as an initial boundary-value problem, suitable for numerical
implementation, it is known to be not hyperbolic, and therefore unstable in numerical applications.

Subsequently, a lot of e�ort has been devoted to �nd hyperbolic formulations of the Einstein equations. �ese
e�orts have lead to the derivation of the Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) formu-
lation [63, 100, 336, 411], which achieves hyperbolicity via a conformal transformation of the 3-metric and the pro-
motion of some contractions of the Christo�el symbols to independently evolved variables and, most importantly,
by inserting the momentum and Hamiltonian constraint expressions in the evolution system. A general-covariant
alternative is the Z4 formulation of [11, 85, 86], which has been presented both in �rst- and second-order form in
the spatial derivatives. More successful have been formulations based on the Z4 one that include a conformal trans-
formation of the metric. �ese are the Z4c formulation, that removes some source terms in the Einstein equations
in order to bring the evolution equations into a form which is closer to the BSSNOK system [75], and the CCZ4 for-
mulation [12, 13], which also includes a mechanism to damp constraint violations as they arise during the evolution
(see also [78, 396] for some recent and slight variants).

Parallel to the quest for be�er formulations of the equations, the development and implementation of be�er
numerical methods has been a main priority of ongoing research. While most general-relativistic codes use �nite-
di�erences (e.g., [99, 326, 373, 375, 471]) or spectral methods (e.g., [425]) for the spacetime evolution, increasing
interests is being focused towards DG methods, which are very a�ractive due to their excellent scalability and
wave-propagation properties. �e la�er allow the propagation of smooth linear and nonlinear waves over long
distances with li�le dissipation and dispersion errors, and turn out to be well suited for the solution of the Einstein
equations, where (apart from physical singularities in black holes) the �elds are smooth and high accuracy can be
achieved.

So far, however, only a rather limited number of a�empts have been made to solve Einstein equations with DG
methods. Field et al. [200] tested a second-order BSSNOK formulation, while Brown et al. [101] developed a �rst-
order formulation of BSSNOK, however both works were limited to spherical symmetry and vacuum spacetimes. �e
�rst DG implementation in non-vacuum spacetimes was published by Radice & Rezzolla [372], but was still restricted
to spherical symmetry. �e �rst three-dimensional (3D) implementation, albeit in a �xed spacetime and focused on
hydrodynamics was developed by Bugner et al. [107, 108]. Miller and Schne�er [327] proposed an operator-based
DG method suitable also for second-order systems and applied it to the BSSNOK system, while Kidder et al. [267]
developed a task based relativistic magnetohydrodynamics code.

Within theis thesis, a novel �rst-order (FO) form of the CCZ4 system is presented, refered to as FO-CCZ4. �e
system’s eigenstructure is studied and strong hyperbolicity is shown for a particular choice of gauges. Subsequently,
di�erent numerical implementations of this PDE system are discussed. �e scheme is solved with the three dimen-
sional code proposed in the previous chapter, using an ADER-DG algorithm with adaptive mesh re�nement (AMR)
and local time-stepping (LTS), supplemented with a high order ADER-WENO [234, 257, 305] �nite-volume subcell
limiter [166, 169, 174] to deal with singularities in black-hole spacetimes.

A series of standard tests for general-relativistic codes [8, 40] are adopted to demonstrate the stability and accu-
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racy of both the PDE itself and its ADER-DG discretization. Veri�cations for the expected convergence order are
given and long-time robustness and stability is proven. Finally, the scheme is applied at a long-term evolution of
single black-hole spacetimes, showing that the new code is able to stably evolve a puncture black-hole spacetime
for a time scale of∼ 1000M (M being the mass of the black hole). Preliminary results for the head-on collisions of
two black holes are presented.

While the equations are given in a general way including ma�er terms, they are vanishing in the presented tests
and Einstein �eld equations are only presented “in vacuum”. Scienti�c results of this chapter have been published
in [168], as well as in [135, 273].

0.3 General relativistic Magnetohydrodynamics within the new framework

Chapter III on page 72 discusses relativistic hydrodynamics. It is the complementary topic compared to the previous
chapter, concentrating solely on the right hand side of Einsteins equations.

In fact, electromagnetism plays an important role in many astrophysical processes such as compact objects and
binaries consisting of black holes and neutron stars. �e general-relativistic theory of magnetohydrodynamics
(GRMHD) is a successful theory to describe these systems, combining the �uid description of ma�er with a simpli�ed
theory for electromagnetic �elds in the absence of free charge carriers. Similar to general-relativistic hydrodynamics
(GRHD), �rst successful (lower-dimensional) simulations of the GRMHD system date back to the pioneering work
of [460] more than 40 years ago (See [202, 317] for recent reviews in the progress of GRMHD simulations).

In the past years, several groups started to recast the system of GRMHD equations into a conservative form in
order to make use of conservative Godunov-type �nite-volume schemes based on approximate Riemann solvers and
high-resolution shock-capturing schemes (HRSC). Many GRHD and GRMHD codes have been developed over the
last decade (for instance [23, 29, 31, 42, 105, 157, 161, 214, 269, 308, 362, 373, 375, 459]) and applied to various topics in
astrophysics. Some codes also evolve the spacetime by feeding back the �uid and magnetic energy-momentum tensor
in the Einstein �eld equations, which govern the time evolution of the metric tensor; some codes even incorporate
radiation transfer like the one proposed by [426], or include the full Maxwell theory in a resistive relativistic MHD
formulation [14, 22, 106, 157, 175, 356].

DG methods have a�racted the interest of the computational-astrophysics community only over the last few
years. In particular, the �rst DG-based method for general-relativistic hydrodynamics has been developed by [372],
but it was limited to spherically symmetric spacetimes. �e �rst three dimensional implementation of a DG method
for relativistic �ows on curved but �xed background spacetimes has been recently presented by [107], but with-
out considering the magnetic �eld interaction. Recently, [267] provided a DG implementation within a task-based
parallelism model for GRMHD, while [27] presented also a DG code with hp-re�nement.

In this work, the previously introduced new numerical scheme is proposed for the solution of the GRMHD equa-
tions. Its shock capturing properties and high-order accuracy on spacetime adaptive meshes (AMR), supplemented
by a high-order a posteriori subcell 2nd order TVD �nite-volume limiter (adopted for shocks and discontinuities)
make it well suited for the evolution of the MHD �ow on curved background spacetimes. In fact, this method was
already successfully applied on special-relativistic MHD equations (SRMHD) in [468].

An important and novel aspect of this approach is the interpretation of the source terms in the GRMHD equations
that account for the gravitational �eld in curved spacetimes as seperate nonconservative products. In other words,
while the GRMHD equations are normally wri�en in a �ux-conservative form with a generic source term which
holds derivatives stemming from the spacetime curvature, in the presented framework, it is wri�en without an
algebraic source but with a di�erential nonconservative term which is part of the system eigenstructure. �is is a
simple rewrite of the equations which neither changes its hyperbolic nature [25, 271] nor the fact that it is already
�rst order, suitable for a large number of �nite volume methods.

A�er the presentation of the modi�ed PDE system, the solution of number of smooth and non-smooth (i.e., shocks
and large gradients including) benchmark situations are provided which demonstrate the correctness of the PDE and
the quality of its numerical solution.

�e results of this chapter have been published in [194] and also in [135, 276, 404].
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0.4 A general-relativistic criterion to seperate prompt from delayed collapse in a binary neutron star merger

Chapter IV on page 95 is the �rst chapter discussing a purely astrophysically driven research topic where all the tech-
niques developed in the previous chapters serve as a tool for modeling four dimensional spacetimes of astrophysical
phenomena. �e chapter presents research done in respect to the issue of lifetimes of binary neutron star collision
remnants. �anks to the �rst neutron star binary merger observations [435] which o�ers new insight into the nature
of neutron stars, constraints in the properties of nuclear ma�er can be probed [26, 70, 112, 331, 334, 359, 371].

When two neutron stars merge, they will produce an object that either collapses promptly to a black hole, or
does not [41]. In the la�er case, the remnant may be a metastable object, e.g., a hypermassive neutron star (HMNS),
eventually collapsing to a black hole on a secular timescale, or survive for much longer times, either as a rotating or
a nonrotating star (see e.g., [43] for a review). In the case of the �rst detection of merging neutron stars, GW170817
[435], the precise fate of the merger remnant is presently unknown, although the formation of a black hole naturally
matches the simultaneous observation of a short gamma-ray burst [186, 383], and has been the working hypothesis
to set new limits on the maximum mass of neutron stars [314, 384, 393, 409].

Determining the time of collapse of the merger remnant is particularly challenging as there are a number of
physical processes that either determine or undermine the stability of merger remnant. �ese include: the ejection of
ma�er [95, 155, 287, 300, 370, 390], the angular-momentum transfer via magnetic �elds [263, 268, 413], the evolution
of the degree of di�erential rotation [232, 261], and possible viscous e�ects mediated either by neutrinos or magnetic
�elds [10, 160, 368, 410].

As already said, observationally, the two scenarios can be clearly kept apart by both the gravitational wave
and electromagic spectra which are much richer in the case of the delayed collapse. A �rst a�empt to seperate
prompt to delayed collapse can be made by the mass of the system M . It is simple to seperate the two scenarios
by a critical (threshold) mass Mth which distinguishes prompt collapses (M > Mth) from delayed ones (M <

Mth), althought it still poses numerical and conceptual challenges. Bauswein et. al. [68] have been the �rst to
explore this problem by employing a smooth-particle approximation for the hydrodynamics and a conformally �at
approximation to general relativity. In this way, they were able to �nd a linear universal relationship between
Mth and the compactness of the maximum-mass model, CTOV := MTOV/RTOV, where MTOV and RTOV are
respectively the mass and radius of the maximum-mass nonrotating star. Here, we improve on this result by using a
fully general-relativistic approach, a wider range of compactnesses, and a rigorous de�nition of the threshold mass.
As a result, we �nd a nonlinear relation between Mth and CTOV, which o�ers a be�er match to the numerical-
relativity results. Furthermore, exploiting the information from GW170817, we use the new relation to set more
stringent lower bounds on the radii neutron stars [68, 70, 96]. �e results presented in this chapter have been
published in [274].

0.5 Quantum modified Schwarzschild solutions

Chapter V on page 107 discussed black hole spacetimes at the smallest scales. �e Schwarzschild solution is only
characterized by its mass M which can have any value. When it comes to quantum size black holes, a natural mass
scale is given by the Planck scale, MPl =

√
~c/G ∼ 2.1 × 10−8 kg ∼ 5.6 × 1027 eV/c2, which is tiny compared

to astrophysical scales but nevertheless huge when compared to the masses of the standard model particles. �e
theory of quantum mechanical black holes is called quantum gravity (QG), and its theoretical description is a long-
standing problem, experimentally it also remains inaccessible. �antum �eld theory on curved space (QFTCS) is
an approximating theory to describe quantum ma�er on classical curved background space, and Hawkings famous
result that quantum black holes are actually black bodies that emit thermal readiation at a temperature proportional
to their surface gravity [238] belongs to this class of �rst order quantum gravity e�ects. As soon as the Hawking
temperature comes in the regime of the Planckian black hole mass itself, this thermodynamical description breaks
down.

Black holes also question the understanding of quantum mechanics itself. Conventionally the Compton wave-
length is thought to assume arbitrarily small values, provided one smashes particles at higher enough energies.
�is way of reasoning, however, breaks down at the Planck scale. A Planckian black hole is expected to form
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due to the collapse of particles at such extreme energies [3]. �is is equivalent to saying that gravity is ultravi-
olet self-complete, i.e., there are no propagating quantum degrees of freedom in the trans-Planckian regime and
length scales below the Planck length are inaccessible [39, 123, 125, 178, 179, 180, 181, 182, 183, 204, 335, 346, 418].
Such features are e�ectively captured by a modi�cation of commutation relations known as generalized uncer-
tainty principle (GUP) [19, 21, 265, 310, 452], resulting in a modi�cation of Heisenberg’s uncertainty principle
∆x∆p ≤ ~/2

(
1 + β(∆p)2

)
, where

√
β ∼ `Pl and `Pl the Planck length. For ∆p � `Pl, length scales become

proportional to ∆p, as expected from the presence of a black hole in the trans-Planckian regime. For reviews see
[248, 419, 432].

�e GUP has been invoked to improve the scenario of black hole evaporation, that is customarily a�ected by
a divergent pro�le of the Hawking temperature T in the terminal phase. With ∆p ∼ T and ∆x ∼ GM , the
temperature pro�le is no longer divergent and a Planckian black hole remnant forms as an evaporation endpoint
[4, 5]. Such a remnant has also been considered as a candidate for cold dark ma�er component [136]. �ere are,
however, potential problems at the basis of such results. Planckian remnants have Planckian temperatures. �e
surface gravity description of the temperature no longer holds.

To amend the above limitations, a new approach has been proposed in order to implement GUP e�ects in grav-
itational systems [253]. As a start, one can notice that the GUP introduces nonlocality by preventing in�nitesimal
resolution. �erefore one might be led to consider a nonlocal version of Einstein equations [60, 282, 329, 441], where
nonlocal spacetime (i.e., a nonlocal Einstein tensor, smeared by a operator-valued gravitational coupling constant)
is coupled to classical spacetime (i.e., the Schwarzschild source term). Such a theory can be either used to described
large scale degravitating e�ects [34, 61, 62, 184] or short scale modi�ed gravity theories [115, 204, 210, 330, 340]. One
can select a speci�c smeared gravitational coupling constant G−1

N

(
L2�

)
to reproduce the GUP momentum space

deformation for the static potential due to virtual particle exchange. �e resulting non-rotating black hole metric
allows for horizon extremisation with consequent formation of a zero temperature black hole remnant at the end of
the evaporation [253]. Such a black hole solution not only supersedes the aforementioned limitations of the scenario
proposed in [4, 5], but o�ers additional interesting properties: it removes the scale ambiguity of the Schwarzschild
metric and ful�lls the gravity ultraviolet self completeness by preventing black hole radii smaller than the Planck
length; it allows for a semiclassical description of the whole evaporation process and for the presence of a �nal
heating phase (SCRAM phase [341]) before the remnant formation.

Within this thesis, the case of GUP e�ects in higher dimensional black hole metrics is studied. It should be noted
that there is no unique prescription for the GUP in the presence of extra dimensions [288]. As a result, an analysis
of the existing proposals [122, 123, 126, 159, 289, 290, 291, 318, 319, 320, 398] for the GUP in higher dimensions will
be given.

�e results presented in this chapter have been published in [288], while other are going to be published in an
upcoming publication [275].
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Evolution equations on the

chapter

Icomputer

�is chapter introduces techniques of solving evolution equations for phys-
ical systems with the help of a computer. A�er an introduction, a basic re-
view of the literature, standard de�nitions and techniques is given. �e fo-
cus is then turned to the codes used or developed within this work. Note that
this chapter is with a slight focus on relativistic theories (in astrophysics),
but kept technical and general. In contrast, chapter II is devoted to the Ein-
stein equations and chapter III to hydrodynamics, where the actual equa-
tions are discussed in detail.

�e results of this chapter have been published in [135, 168, 194, 273] and
texts in this chapter are partially based on these publications.

1 Motivation: Hamiltonian time evolution

�e broad class of “evolution equations” can be motivated by Hamiltonian
dynamics: Given a Hamiltonian system, the Hamiltonian H allows to pre-
dict the value of any function f = f(q, p, t) of canonical coordinates q, p
and time t, once f0 = f(q, p, t0) is known at an initial time t0. �is can be
wri�en as

∂f

∂t
= {f,H} =

∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
(1.1)

where the curly brackets indicate the Poisson bracket and the equation itself
is a way to write Liouville’s theorem which holds for a broad class of phys-
ical theories such as classical mechanics and quantum mechanics, where at
the la�er, the Poisson brackets are replaced by the canonical commutator
and equation (1.1) gets an abstract Schroedinger equation ∂f = [f,H] 1 . 1 In fact, Chapter V on page 107 deals with

modifying this commutator in order to in-
troduce quantum e�ects into GR without
doing canonical quantization.

�e Hamiltonian equations of motion {q̇ = ∂pH, ṗ = −∂qH} can be
wri�en as a �ux conservative evolution law 2

2 We use Einstein sum convention, re-
peated indices are summed over.∂tQ

k = ∂iF
ik(Q) (1.2)

for the two-dimensional phase space coordinate ~Q = (p, q) with gradient
vector ~∂ = (∂p, ∂q) and 2 × 2 �ux matrix F ik = εikH(Q) determined by
the Hamiltonian H = H(q, p, t) of the system 3 . 3 With εik the Levi civita symbol in two

dimensions (Appendix A1.2 on page 124).
Note that in this chapter, the position of in-
dices has no physical meaning (no covari-
ant/contravariant tensors involved).

�e Hamilton-Jacobi equation (1.1) can be wri�en as ∂tf = Q̇i∂
if =

∂iQ̇
if since ∂iQi = 0. �is gives rise to also write it in �ux conservative

form (1.2), with an extended

solution vector Q̃ = (Q̇, f) and �uxes F̃ =

(
F ik 0

0 Q̇f

)
. (1.3)
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�is conservation law rewrite exposes the conservation of f in phase space
and gives rise to a probability distribution interpretation of f .

It is worth mentioning that in the mathematical initial value boundary
problem, time is a name for the evolution direction and gets its semantic
meaning only in physics 4 . Ultimately, a “time evolution” is an extension 4 Section 11 on page 44 provides another

discussion of time in the Cauchy initial
value formulation of general relativity.

from the boundary t0 of a known domain, characterized by t < t0, into an
unknown domain t > t0. An example where the evolution direction is not
called time is the adoption of the Cauchy-Riemann equations, 5 5 an introductory example from [442]

∂xu = ∂yv , ∂yu = −∂xv , (1.4)

to perform an analytic continuation of a complex function f(x, y) = u(x, y)+

i v(x, y), with z = x + iy, from the real numbers to the complex domain.
�en one can recast the imaginary axis as time, t = y, and write the PDE
in �ux conservative form ∂tQk = ∂xFk as a time evolution of Qk in one-
dimensional space (x), with state Q = (u, v) and �uxes F = (−v, u). As
both the �ux F and the function f are linear in Q, a holomorphic function
(i.e., a solution to (1.4)) is conserved within analytic continuation.

2 Conservation laws

A general de�nition of a conservation law is

∂tuk + ∂iF
i
k(u) = 0 (2.1)

and we call ~u = ~u(t, ~x) ∈ Rn the conserved quantity or (system) state,
~∂ ∈ Rd is the vector di�erential operator (Nabla operator) in d spatial di-
mensions. ~Fk is called the �ux for uk , all �uxes F ik ∈ Rd×n together encode
the physical evolution law 6 . 6 All quantities introduced here should be

understood as �elds φ = φ(t, ~x), and there-
fore F (u) only has an implicit dependence
on time and location. However, one can
triviall make this dependence explicit by
including the coordinates ~x itself into the
state vector.

~u is frequently refered to as state vector, but in general no transformation
properties as for a vector in physics are required within this chapter, and
for the theories presented in this work, ~u will not transform as a vector in-
physics. Instead, this object should be refered to as the state tuple of length
n ∈ N. While for conservation laws the distributional interpretation of ~u
suggests ui ∈ R, in general there is nothing prohibiting one from unsing al-
ternative spaces, such as a complex state vector ui ∈ C, as well as elements
ui following any other transformation rule 7 . In these cases, the state vec- 7 For instance a state vector holding

square matrix elements ui = mkj ∈
MN×N (R), with the row-major sequen-
tialization rule i = f(k, j) = Ni+ j.

tor should collect all degrees of freedom of the mathematical objects it holds.
Sometimes, (2.1) is wri�en compactly in spacetime as ∂uFµk (u) = 0, and
F 0
k (u) then allows to map u to the mathematical objects of interest.

2.1 The non-conservative product

If one allows an arbitrary (di�erential) source term ~S = ~S(u, ∂iu) 8 to add 8 In this section, we restrict on �rst order
theories, so any higher order derivatives of
u are neglected.

sinks and sources for ~u, the resulting modi�cation of (2.1) is called a balance
law,

∂tuk + ∂iF
i
k(u) = Sk(u, ∂iu) . (2.2)

Sources are a convenient way to formalize the coupling to other theories,
however if a source term depends on derivatives of u, the di�erential seper-
ability of the balance law and an external theory is questionable. In or-
der to formalize the di�erential structure of the PDE in question, the arbi-
trary source term Sk shall be restricted to an purely algebraic source term
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Sk = Sk(u). Instead, derivatives shall be collected in another in an explicit
quasi-linear nonconservative term which couples to the gradient �eld of u,
giving rise to a modi�ed balance law

∂tuk + ∂iF
i
k(u) +Bijk (u)∂iuj = Sk(u) (2.3)

We refer toBjk ∈ Rn×n as the non-conservative matrices 9 and toBi(u)∂iu
9 To avoid confusion, all indices are given

in equation (2.3). However, again, the
index position has no meaning in terms
of contra/covariant. In three dimensions,
B = (B1a

b , B2a
b , B3a

b ) is a vector of three
Rn×n matrices. �e same applies for the
system matrices Ai introduced in (2.4).

as the non-conservative product (NCP) or the non-conservative �ux (in con-
trast to the conservative �ux).

�e advantage of introducing the non-conservative product is that it can
be straightforwardly included in the quasi-linear formulation (next section)
and in numerical methods (Section 5.3 goes into detail about the inclusion
in a Riemann solver).

2.2 Quasi-linear PDEs and their eigensystem

All evolution laws presented so far are �rst order partial di�erential equa-
tions (PDEs). �ere is a rich theory of this class of PDEs, based on casting
the PDE as a quasi linear system

∂tuk +Aijk (u)∂iuj = Sk(u) (2.4)

with the d system matrices Ai ∈ Rn×n given by

Ai = Aijk (u) = ∂F ik(u)/∂uk +Bijk (u) (2.5)

and sometimes also called velocity matrices. �e theory of hyperbolic PDEs
investigates the system matrixes Ai in an eigenvalue analysis. �erefore,
the di�erential contributions to (2.4) are recognized as part of a di�erentially
linear system 10 . In the eigenbasis, the system decouples to n advection 10 �at means especially that the purely

algebraic sources S do not contribute to the
characteristic form.

equations of type ∂tφk+λk∂iφk = 0, where φk are called the characteristic
�elds. �e eigenvalues λk are recognized as the fundamental propagation
speeds of waves in a hyperbolic system. 11 11 see for instance classical textbooks

about hyperbolic systems [301, 442]Higher order PDEs have to be rewri�en to �rst order to reveal their char-
acteristic structure. A classic example is the one dimensional wave equa-
tion [442]

∂2
t φ− c2∂2

xφ = 0 (2.6)

which is trivially rewri�en as two �rst order equations, by means of factor-
izing the di�erential operator

(∂t − c∂x) (∂t + c∂x)φ︸ ︷︷ ︸
:=ψ

= 0 , (2.7)

where the auxilliary �eld ψ was introduced and a set of two couple PDEs is
obtained,

∂tψ − c∂xψ = 0 , ∂tφ+ c∂xφ = ψ . (2.8)

�e �rst order in time and space formulation of the wave equation (2.8) can
then be brought into quasi-linear form (2.4) and then immediately exposes
the wave speeds ±c, since Ax is diagonal,

∂t

(
ψ

φ

)
+

(
−c 0

0 +c

)

︸ ︷︷ ︸
Ax

∂x

(
ψ

φ

)
=

(
0

ψ

)
. (2.9)
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A

hyperbolicparabolic elliptic

strongly weakly

strictly

symmetric

Figure 2.1: Standard classi�cation of (�rst
order) PDE systems depending n the system
matrix A. �e relationship x → y means
that each y has also all properties of x (ie.
each y is a x), but not the other way around.

Depending on the eigenvalues ofAi, the PDE system is called elliptic (not
a single real eigenvalue, an example is the Poission equation ∂i∂

iu = f

where the wave speeds are unlimited), parabolic (an example is the heat
equation ∂tu − α∂i∂

iu = 0) or hyperbolic (n real eigenvalues, as the
presented wave equation (2.8)). Weak hyperbolicity is given if the set of
eigenvectors is not complete (i.e., Ai not diagonalizable), while strong hy-
perbolicity is given with a complete set of eigenvectors (and real eigenval-
ues). Strict hyperbolicity is given with n distinct eigenvalues. Symmetric
hyperbolicity is given when Ai is symmetric and thus diagonalizable (see
Figure 2.1 for a diagram). In one spatial dimension, all strongly hyperbolic
systems are also symmetric hyperbolic.

Weakly hyperbolic PDEs su�er from well-posedness, i.e., small perturba-
tions in the initial data can change the solution dramatically (Appendix A2).
In contrast, strongly hyperbolic systems can be decomposed into indepen-
dent advection equations (characteristics) with the help of a symmetrizer
matrix which is composed by the (right) eigenvectors. �e di�erent �nite
wave speeds of the characteristics are given by the eigenvalues of the system
matrix, which accounts for the wave-like nature associated with hyperbolic
systems.

Sti�ness is another feature which can be derived from the eigenstructure:
PDEs which describe phenomena on very di�erent timescales. Sti�ness is
de�ned by the ratio R = λmax/λmin between the largest and the smallest
eigenvalue (wave speed), and a large sti�nessR� 1 can be challenging for
a computer-aided solution.

For linear PDEs, where Ai(u) = Ai does not depend on the state u and
thus the quasi-linear form is also algebraically linear, any PDE can be re-
duced to ordinary di�erential equations (ODEs) by separation of variables.
For nonlinear systems, fundamental de�nitions of existence and unique-
ness of a solution to the PDE must be solved. A popular example are the
harmonic solutions of Laplace’s equation which are obviously non-unique
in the vicinity of boundary conditions. Appendix A2 contains a couple of
standard mathematical de�nitions of convergence, consistency and stabil-
ity.

2.3 The Riemann problem
le� state right state

x0 x

u

Figure 2.2: Initial value cartoon for the
generic one dimensional Riemann prob-
lem (2.10).

�e Riemann problem is a general initial value problem with initial data

u0(x) = u(t0, x) = uLΘ(x− x0) + uRΘ(x0 − x) (2.10)

seperating a le� state uL from a right state uR at x0 with the Heavyside step
function Θ(x) 12 . Within �uid dynamics, there is a straightforward inter-

12 See symbol de�nitions at Ap-
pendix A1.2 on page 124.

pretation of the problem: It models a tube with a membrane that seperates
two di�erent �uid states (for instance with di�erent densities). �e mem-
brane is removed at t = 0. �e system equilibrates, and due to the disconti-
nuity, the di�erent wave speeds of the system can be recognized [301, 442].
�e resulting waves have a physical and mathematical meaning. Mathe-
matically, the waves expose the characteristics of the system. Physically,
the three di�erent eigenvalues of hydrodynamics 13 manifest in three dif- 13 Chapter III is devoted to hydrodynam-

ics. Classical Euler equations and its eigen-
values are discussed in Section 19.1 on
page 74.

ferent types of shock waves: Contact discontiunities (an equilibrium surface



evolution eqations on the computer 21

seperating the two states), shock waves (accompanying compression) and
rarefraction waves (accompanying expansion).

Nonlinear systems (such as Euler equations) can develop shocks in �nite
time even in the case of smooth initial data, this makes the Riemann prob-
lem as the formalization of discontinous (initial) data especially interesting.
In numerical schemes for nonlinear systems, the occurence of shock waves
introduces one of the most challenging problems. Shock waves have a num-
ber of undesirable features, such as the reduction to �rst order around the
shock wave and complete loss of convergence at the discontinuity, as well
as the introduction of persistent arti�cial oscillations around the disconti-
nuity.

�e Riemann problem is a key part of Godunov’s method (Section 5).
Due to its relevance in hydrodynamics, part of the demonstration of the
correctness of a �uid dynamics code are the numerical solutions to one di-
mensional Riemann problems. �e exact reference solution is not known
analytically, but iterative solutions are possible. 14 14 Riemann problems for the GRMHD

equations are discussed in Section 24.1 on
page 86, where their exact solution was for
instance explored in [215].3 Solving PDEs with machines

When it comes to solving partial di�erential equations, numerical methods
are a powerful tool for evolving equation systems without approximations
(simpli�cations) 15 . Numerical mathematics (also refered to as numerical 15 for a particular discussion of approxi-

mations to the equations vs. approxima-
tions to space and time see Section 10 on
page 43 about solution a�emps in general
relativity.

analysis) is the discipline which studies the e�ects of numerical approxi-
mations of continous theories. It is worthwhile to say that while e�orts are
to reduce the discretization errors in practice, it is much more important to
understand and control them in the �rst place. 16 16 Any method which promises “ne-

glectable” errors fails to comply the central
scienti�c claim of numerical mathematics,
namely quantitatively understanding
errors.

Nowadays, the term “computer” usually refers to a register machine which
excels at doing basic arithmetic operations on lists and tables of numbers,
typically with the IEEE 754 �oating point arithmetic operations (FLOP).
Clearly the engineering e�orts in the last decades demonstrated the power
of this technology, nowadays a consumer-grade laptop (notebook) can com-
pute up to ∼ 1011.5 FLOP/second while a supercomputer is capable of
roughly ∼ 1017.5 FLOP/sec. Furthermore, the contemporary meaning of
a “supercomputer” is a cluster of up-to-date processors, i.e., causally speak-
ing, a network of ∼ 106 consumer-grade laptops. �erefore, the central
topic of computer engineering a modern PDE code is parallelization. �e
remaining sections of this chapter are dedicated to schemes which satisfy
concurrency challenges of the upcoming generation of supercomputers.

However, the way computers represent numbers and implement arith-
metics is neither self-evident nor unique. In the following, two non-numeric
approaches to computationally backed up PDE time evolution shall be given.

3.1 Symbolic computing

Equal

R Times

2 Power

c -2

G M

Figure 3.1: An exemplaric representation
of R = 2GM/c2 as an expression tree,
produced by the Mathematica expression
TreeForm[R==2GM/c2].

In the 1950s it was a widespread belief that scienti�c computers would
only be capable of doing numerics [93]. Mainly driven by the young re-
search branch of arti�cial intelligence, new programming languages were
developed (the family of functional languages, such as LISP [321]) or for-
mally speci�ed (based on the Lambda calculus model of computation) which
demonstrated that von-Neumann register machines are well capable of do-
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ing symbolic mathematics (instead of numeric mathematics). In the modern
scienti�c computing landscape, these approaches are bundled in Computer
Algebra Systems (CAS) which provide an orthogonal approach to numer-
ical computations. For instance, all modern computer-driven perturbative
approaches (in the weak-�eld regime of �eld theories) are ultimately based
on this symbolic machinery. An exemplaric code in quantum �eld theories
is xloops (based on giNaC) for evaluating Feynman diagrams up to thou-
sands of orders [102, 414]. In fact, computer algebra is also very prominent
in general relativity (see [309] for a review). An example for a popular CAS
package is SageManifolds (based on Mathematica) [81, 223, 224], as well
as the Mathematica based Kranc code for generating tensorial evolution
equations [251, 299].

Symbolic computing has an abstract syntax tree as fundamental data
structure (Figure 3.1). In contrast, numerical computing uses tables of num-
bers as fundamental data structure. Delayed evaluation has no relevance in
numerical schemes. In practice, the CAS frequently serves as a preproces-
sor to generate numerical code or as a general tool in the daily work of a
data scientist to manipulate and study lengthy expressions 17 . 17 �e �rst order CCZ4 system in Sec-

tion 14 on page 52 is in fact derived and ma-
nipulated with several CAS (Mathematica,
Maple, sympy).3.2 Analog computing

Another example is in the domain of analog computing, a form of building
computing machines especially popular in the 1950s. Analog computers ex-
celled at solving di�erential equations. Such a computer was “programmed”
by modeling the physical problem with an electrical analog (therefore the
name), i.e., connecting inductors, capacities and ohmic resistors in a way
that the currents or voltages in the electric circuit are determined by the
same PDE as the actualy problem which shall be solved. Figure 3.2 shows a
simple example which already shows an abstraction layer, as the electrical
circuit components are high level building blocks such as integrators and
summers.

Figure 3.2: Sketch of a damped oscillation
as a toy problem from classical mechanics,
described by the ODE IVP ẍ = −0.2ẋ −
0.5x + 1 with ID x(0), ẋ(0). �e lower
panel shows the electrical circuit to solve
the analogue problem. Adopted from [230].

While analog computers disappeared from the frontline of computing
in favour of digital computers, even today there is active research stating
that analog computers could solve PDEs in a parallel and energy-e�cient
way, as it is out of reach for digital processors [449]. It is likely that analog
computing will enjoy a similar revival as vector computing did, in terms
of an integration in modern computer generations. Analog parts could be
casted as coprocessors or accelerator units in the same way as graphic cards
and dedicated computing cards are used today.

In fact, analog models of gravity is a research �eld on its own [49, 58],
where modern a�emps date back to 1980s proposals of Unruh about access-
ing black hole evaporation in �uid �ows determined by analog laws [450].
However, general relativity was not solved on analog computers yet, and
this remains a research program for the future.

4 Time and Space discretizations

A�er the excursion of section 3, for the rest of this work, all PDEs are sub-
ject to a numerical solution (if not mentioned otherwise). �is requires to
discretize the continuum problem in a suitable way. �e classical literature
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distinguishes between temporal and spatial discretization 18 . �is section 18 Where the “temporal” direction (dimen-
sion) is characterized by the (volatile) evo-
lution direction while the “spatial” direc-
tions (dimensions) de�ne the spatial simu-
lation domain which is hold in memory.

is a short survey in basic grid based methods with focus on “semi-discrete”
time integration techniques in order to solve PDEs such as (2.3). In contrast,
the subsequent Sections 5 on page 26 and 6 on page 29 cover fully discrete
techniques, i.e., approaches which allow for the PDE solution in a single
(uniform) spatial and temporal discretization procedure.

4.1 Semi temporal discretization

A scheme with spatial discretization, but without a similar (explicit) tempo-
ral one is called semi discrete. Semi discretization is a popular term in liter-
ature and may be misleading: In a numerical a�empt to solve PDEs, evven-
tually both the spatial and the temporal dimensions must be discretized.
However, the di�erent treatment of the temporal and spatial di�erential
operators as well as the non-discretization in temporal direction between
discrete timesteps (Figure 4.1) is a motivation to adopt the term “semi dis-
crete”.

�e method of lines (MoL) is a particular example of a semi temporal
method. �e idea in MoL is to recast the PDE describing uk(xi, t) into n×N
ordinary di�erential equations (ODEs), with n the state vector length andN
the number of points xi covering the spatial domain Ω 19 . �at is, the MoL 19 Note that the MoL approach is invariant

under the spatial discretization. It does not
require any particular grid.

solves one ODE in time (from initial data t0 to t1) for every (discretized)
spatial point and �eld, that could be denoted as

∂tuk(xi, t) = R(xi, uk(t0), ∂juk(t0)) (4.1)

where the spatial di�erential operator R collects all PDE terms of (2.3).
Popular ODE time integrators are Euler’s method or the higher order non-
linear total-variation diminishing (TVD) or strong stability preserving (SSP)
Runge-Ku�a (RK) methods (see Appendix A2 for details). �ese are explicit
(dependency at time t only on t0 < t, not t1 > t) single-step (no depen-
dence on t < t0) methods and easy to implement. Another popular example
for ODE integration are linear multistep high order integrators, such as the
Adams-Bashforth (AB) method which represents the �eld with polynomials
in time. �e cost to pay for high order methods is the need for repeatedly
evaluate/update the right hand side (RHS) in (4.1), which requires evaluat-
ing spatial derivatives, which implies communication.

fi
e
ld

 v
a
lu

e

space (simulation domain) tim
e

Figure 4.1: Motivation for the naming
Method of Lines (4.1): �e lines are the indi-
vidual solutions at certain positions within
the spatial domain, over the simulation
time. �is �gure illustrates that space is dis-
cretized but time is not. �e three coloured
lines (“slices” in the height-elevated plot)
are neighboured: In order to determine the
time evolution of the blue slice, informa-
tion from the green and red slice have to be
taken into account.
�e example shows a scalar di�u-
sion equation ∂tφ = κ∂2

xφ with
arbitrary κ and initial �eld φ0 =
1
2

exp
{
−(x− 1)2 + exp(−(x+ 1)2)

}
.

It is modi�ed and colorized from [400].

Implicit or backward methods such as the Crank-Nicholson are poular
for sti� PDEs due to their small domain of dependency (i.e., the spatial re-
gion which in�uences the solution at a given point due to causality / char-
acteristic speeds) or for when the timestep size is constrained by a spatial
discretization method (such as in the Discontinous Galerkin method, see
below). Implicit methods allow larger timesteps compared to explicit meth-
ods. On the other hand, the solution for a time t has to be found by solving
an implicit equation (e.g., iterative root �nding).

For special problems, sophisticated time integrators beyond the MoL ex-
ist which take particular problem properties into account. For instance, a
symplectic integrator scheme conserves the momentum space volume dp dq

during the integration of Hamilton’s equations by evolving the coupled
canonical coordinates p and q.
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4.2 ADER time integration

�e ADER technique (from Arbitrary high order DERivatives) was pionieered
by Toro and Titarev [436, 437, 445] in the context of Finite volume schemes
(Section 5). It bases on the idea of tayloring the time evolution in (4.1),

∂tuk(xi, t) =

N∑

l=0

tl

l!
∂ltuk(xi, t0) , (4.2)

so that ∆t = t − t0, and then expressing the lth order temporal deriva-
tive with spatial derivatives which are obtained by the PDE weak form and
partial integration with a N th order test function, similar as it will be pre-
sented in Section 6. �is way, the time update relys on theN th order spatial
discretiation and can be computed analytically to N th order.

�e ADER approach leads to arbitrary high-order accurate fully discrete
one-step schemes in space and time. �e arbitrariness here is just repre-
sented by the fact that N ∈ N can be choosen freely (with bigger N re-
sulting in higher computational cost, of course). one-step e�ectively means
no repeated evaluation of the (4.2) RHS. �is is the communcation-avoiding
property of the ADER approach which pays o� on massively parallel grids. 20 20 Appendix A3 on page 127 compares the

ADER time evolution with the Runge-Ku�a
one.

4.3 CFL factor

In hyperbolic systems, the temporal discretization is limited by the spatial
discretization. �e formalization for limiting the timestep size ∆t = t1− t0
is known as the Courant-Friedrichs-Lewy (CFL) condition. �e argument
can easily derived by the classical kinematic law s = v ·t, with s the traveled
distance of a particle moving with constant velocity v over time t. Given
the distance ∆x = Λi∆t is traveled by a system’s wave with characteristic
(eigenvalue) λi, the maximum timestep is therefore constrained from above,

∆t ≤ ∆x/Λ , (4.3)

with Λ the maximum of the systems eigenvalues λi. In practice, the in-
equality (4.3) is replaced by ∆t = C∆x/Λ with 0 < C ≤ 1, where the
arbitaryily chosen C is called the CFL or Courant factor.

4.4 Methods for spatial discretization

For spatial discretization, there exist a couple of standard classes with di�er-
ent a�emps. While adopting a somewhat regular grid (Figure 4.2) is prob-
ably obvious (Section 7 discusses grid meshing in detail), there is a whole
class of meshfree methods. A particular example is smoothed-particle hy-
drodynamics (here coordinates move with the �uid), which is in particular
popular in astrophysics, since it easily allows to cover several orders of mag-
nitude in length scales. Hybrid a�emps exist, such as Particle-in-cell (PIC)
approaches which combines particle methods with grid based ones.

Another general class of methods are spectral methods where the sim-
ulation domain Ω is covered by a function basis [241]. �is is typically
used for smooth problems where Fourier series can be used to eliminate
di�erential operators. Formally, spectral methods belong to �nite element
methods (FEM) which �rst subdividide the computational domain Ω by a
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�nite number of (typically) nonoverlapping elements Ωi where the spectral
methods are then applied within (see also Section 6.1). Finite-element meth-
ods are known also under the name of variational-di�erence or projection-
di�erence methods [211, 388].

Finite volume methods (FVM or just FV) share some features with FEM,
and these two terms can be used in some respect synomyously, whereas
“FEM” has a slight focus on meshing topologies and embedding of meth-
ods within single cells, while “FVM” has to some extend a focus on the
integral formulation and interfacing of cells (Godunov’s method, Riemann
problem), typicall implemented around a grid with small volumes around
spatial points.

A clear distinction however can be made between FV and �nite di�er-
ences (FD) methods. In the later method, the PDE is solved by employing
the �nite di�erence quotient between certain connected points in a grid,
while a FV scheme works on volume and surface integrals, applying Gauss’
theorem.

4.5 Finite-difference schemes

Figure 4.2: Example of an arbitrary three
dimensional �nite di�erencing stencil. De-
pendent points (blue) are neighbouring the
evaluation point (red). In order to compute
the derivative of a �eld on this grid at the
red point, all dependent points in a certain
direction projection are taken into account.
(coloured from [217])

Finite di�erencing is probably the most straightforward way of solving dif-
ferential equations on a computer. �e starting point and origin of the name
is to undo the in�nite limit h→∞ of the di�erence quotient

df(x)

dx
≈ f(x+ h)− f(x)

(x+ h)− x (4.4)

By choosing a �nite but small h, the spatial di�erential operator in the
Method of Lines (4.1) can be computed. �e most simple way to imple-
ment this is to discretize space on a �nite number of grid points xi = i∆x,
store the function values f(xi) = fi and set h = ∆x.

�e concept is easily extended to generic �nite di�erencing stencils (Fig-
ure 4.2), higher dimensions and arbitrary order derivatives (df/dnx). Finite
di�erencing techniques are popular for being computationally cheap and
easy to implement. For instance, there is no need to cast a PDE system into
a particular form (such the nonconservative form (2.3)) and rectangular reg-
ular grids as well as di�erential stencils can be represented by (continous
storage) arrays.

4 8 12 16 20
Patch size x

0.0

0.5

1.0

1.5

2.0

G
ho

st
ce

ll
ov

er
ph

ys
ic

al
ce

ll
ra

tio
R

ghost layer
width w

1
2
3

Figure 4.3: Ghost cell volume G =

12xw2 + 6x2w + 8w3 to actual physi-
cal domain V = x3 ratio R = G/V in
three dimensions for di�erent ghost layer
widths w (i.e., half the stencil sizes in FD
context). On the abscissa, the width x of a
cuboid (domain or patch) is given in num-
ber of cells. �ese small patches are realistic
in the ExaHyPE AMR code, while traditional
codes such as Cactus have an order of mag-
nitude larger cells.

A major drawback of obtaining high order in a large simulation is the
appearance of ghost points outside the simulation domain. In a naive carte-
sian domain decomposition for the parallel evaluation of the di�erential
operator, the “ghost halo” fraction can quickly make a substantial part of
the simulation domain on the computer which is especially costly when it
comes to data exchange in the boundary (Figure 4.3).

A numerical drawback of high order �nite di�erencing schemes is the
unsuitability for discontinous solutions where the large stencil will gener-
ate spurious solutions. �is makes them una�ractive for nonlinear conser-
vation laws. On the other hand, such problems do not occur in linear and
linearly degenerate systems 21 where no shocks can be generated if the 21 In section 14 on page 52 it will be shown

that parts of a particular formulation of Ein-
stein equations, the CCZ4 equations, can be
wri�en in a linear degenerate way.

initial data is not discontinuous itself.
Finite di�erence methods can be “forti�ed” with a number of methods

such as arti�cial dissipation for stabilisation [283]. Another typical choice
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for hyperbolic conservation laws are special upwinding stencils to correctly
track the system characteristics. Both topics are typically covered by Rie-
mann solvers in FV schemes and implementing them explicitely in FD schemes
can be seen as a hardening of the simple FD schemes in order to gain ro-
bustness by maintaining a computationally and logically cheap scheme. In
the same way, FD can also be used empowered with high resolution shock
capturing (HRSC) techniques.

5 Finite-volume schemes
Fluxes

Cell center

D
om

ain boundary

Grid vertex

Control
volume

Figure 5.1: Finite volume simulation do-
main and termiology in an exemplaric sim-
ple two-dimensional Cartesian grid with
rectangular cells. Shown are the cell
barycenters, the cell corners, a domain
boundary, the �uxes/waves which are de-
scribed by the Riemann problem for a single
highlighted demonstrator cell.

Finite-Volume schemes discretize the simulation domain Ω into cells Ωi

which shall hold cell averaged or piecewise constant solutions. It was the
insight of Godunov in 1959 [218] to solve then the Riemann problem (Sec-
tion 2.3) at these interfaces in order to solve the PDE. Godunov’s method
itself is fully discrete in time and space, but its time update can easily be
replaced by the method of lines (Section 4.1). For recent reviews for FV in
relativistic astrophysics, see [202, 316].

5.1 Godunov’s scheme

A �nite volume scheme works on the average value uni of the state vector
within a spacetime-cell [tn, tn+1] × Ωi, and for simplicity we work in one
dimensions in this subsection, so Ωi = [xi, xi+1], ∆t = tn+1−tn and ∆x =

|Ωi| = xi+1−xi. �e cell barycenter is located at xi+1/2 = xi+ ∆x/2 and
the cell average given by

ūni :=
1

|Ωi|

∫

Ωi

u(tn, x) dx . (5.1)

Godunov’s scheme can be derived by integrating the PDE (2.3) in time and
applying the piecewise constant assumptionu(t, x) ≡ uni for t ∈ [tn, tn+1].
�e time integral collapses and allows to write

un+1
i = uni −

∆t

∆x

(
fi+1/2 − fi−1/2

)
+

∆t

∆x
B·
(
uni+1/2 − uni−1/2

)
+∆tS(uni ) .

(5.2)
Here, a couple of remarks are neccessary: First, this scheme is obviously
fully discrete in space and time, as well as explicit in time. �e conserved
�ux was replaced by a numerical �ux which is thanks to the piecewise con-
stant assumption just given as

fi−1/2 =
1

2

(
F (u−i−1/2) + F (u+

i−1/2)
)

=
1

2

(
F (uni−1) + F (uni )

)
,

fi+1/2 =
1

2

(
F (u−i+1/2) + F (u+

i+1/2)
)

=
1

2

(
F (uni+1) + F (uni )

)
.

(5.3)
Second, since Godunov’s method is �rst order, the nonconservative con-
tribution vanishes as the boundary extrapolated data are equal, uni+1/2 −
uni−1/2 = 0. �e nonconservative source termB therefore vanishes.

�e essential idea of Godunov is now that with the piecewise constant
assumption, a Riemann problem can be solved at each cell interface. �e
initial data for the Riemann problem between xi and xi+1 is then given by
the two cell values

u(tn, x) = uni θ(x− xi+1/2) + uni+1θ(xi+1/2 − x) (5.4)
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with Heaviside step function θ(z). Once the Riemann problem is solved,
also the the time update (5.2) is given 22 . We call equations of type (5.3) 22 �e CFL conditions (4.3) must be ful-

�lled and the scheme can be easily extended
to higher dimensions in a dimension-by-
dimension fashion.

Riemann solvers and in fact this simple one is already su�cient for �rst
order Godunov. However, there are more sophisticated Riemann solvers
which do not make the piecewiese constant assumption. Popular choices
are the Roe solver and HLLE solver (see next Sections).

5.2 Higher order finite volume
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Figure 5.2: Cartoon which demonstrates
how higher order reconstruction of the �eld
works: While a �rst order reconstruction
method assumes cells to have an average
value (cells in this one-dimensional exam-
ple are non-uniformly sized), in a second
order reconstruction (think of a Taylor ex-
pansion in each cell, with a linear term) the
�eld is approximated by taking neighbour-
ing cells into account. In general, require-
ments such as a continuity condition do not
neccessarily have to be ful�lled, while they
typically are desirable in schemes.

Higher order FV is archieved by improving description of the interface state
values u± by taking next-to-neighbour cells into account. �e simplest
possibility is to switch to a piecewise linear 2nd order description where
ui(x) = ui + vi(x− xi) within a cell (Figure 5.2).

TVD conditions lead to non-linear limiting of slopes, such as the minmod
limiter. In general, a kth order reconstruction operator

R [qi] = lim
y→xi

q(y) +O(∆xk) (5.5)

applied at a cell average at position xi reconstructs the continous �eld q
locally around xi. Successful methods used in the literature are for instance
the piecewiese parabolic method (PPM), the essentially non-oscillatory (ENO),
the weighted essentially non-oscillatory (WENO) and the monotonicity-
preserving (MP) [374]. All of them are high resolution shock capturing,
i.e., they preserve a good resolution at discontinuities and do not introduce
spurious oscillations.

Similar as to FD methods, for a kth order reconstruction, the domain of
dependency includes k neighbouring cells per dimension. Reconstruction
operators can also be formulated in stencils which look like FD stencils.

5.3 Riemann solvers and the nonconservative product

�e generic integral form for solving (2.3) with FV introduces a space and
time integral,

un+1
i − uni −

∫∫

Tn ∂Ωi

F(q−, q+) ddxdt =

∫∫

Tn Ωi

[S(q)−B(q) · ∇q] ddx dt . (5.6)

Here, F is the numerical �ux at the element interface. If not mentioned
otherwise, a simple Rusanov Riemann solver is used [395],

F
(
q−h , q

+
h

)
· n =

1

2

(
F (q+) + F (q−)

)
· n− 1

2
|Λi|

(
q+ − q−

)
± 1

2
B

(
q+ + q−

2

)
· n
(
q+ − q−

)
. (5.7)

Note that for the piecewise constant approximation (Godunov’s �rst order
scheme), q+ = q− and (5.7) reduces to (5.3).

It should be stressed that the use of the nonconservative product within
the Riemann solver/path conservative integration is not required per-se. It
would have been equally possible to integrate a di�erential source in a non-
path conservative way. However, the special treatment allows it to formu-
late well-balanced numerical methods [74].

�e inspiration to use path-conservative schemes for nonconservative
products has been taken from successful developments in the context of
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well-balanced numerical methods for the solution of the shallow-water equa-
tions [129, 130, 357], where the bo�om-slope term (which is the gradient of
a known function and accounts for gravitational forces in shallow-water
models) is discretized as a nonconservative product in the principal part of
the system rather than as a classical algebraic source term. In the shallow
water context, the family of path-conservative schemes allows to preserve
certain stationary equilibrium solutions exactly up to machine precision
also on the discrete level, including nontrivial equilibria [208, 209].

5.4 MUSCL-Hancock

AB B

B

BC

C C

C
a b
b c

b
b
b

b

b

Figure 5.3: Cartoon of the ghost cell opti-
mization in ExaHyPE: Patches are denoted
with upper case le�ers (A, B, C), while em-
bedded FV subcells are denoted with lower-
case le�ers (a, b, c). �e le�er a refers to
the patch/cell which solution shall be com-
puted. �e le�ers b refer to their direct
neighbours (sharing a face), while the let-
ters c refer to the corners (sharing an edge).
Two ghost layers are drawn. Here, the in-
formation in the domain C∩ c is not avail-
able.

�e second-order acurate MUSCL-Hancock TVD �nite-volume scheme [446]
is the second-order FV scheme available in ExaHyPE. It has proven robust-
ness in the presence of shock waves and low density atmospheres. For-
mally, the second-order MUSCL-Hancock scheme can be derived from the
PDE (2.3) as in (5.6).

High order in space, together with non-oscillatory properties, are achieved
via a nonlinear reconstruction of piecewise polynomials from the known
cell averages v̄ni,s using a TVD reconstruction. In order to preserve high
resolution shock capturing properties, high order reconstruction requires
slope limiting (also refered to as �ux limiting). Such a limiter allows to
restrict the order of the scheme at discontinuities. In ExaHyPE, di�erent
slope limiters were implemented, such as the minmod [389] or the Koren
limiter [280].

Particulary relevant for ExaHyPE is the fact that in this code, the re-
construction stencils at patch boundaries lack isentropy (Figure 5.3). In
ExaHyPE, corner cells are not synchronized for performance reasons (es-
pecially because it is primarily a DG code and DG does not require the
knowledge of corner values). �is requires the FV reconstruction in d ≥ 2

dimensions to stick to a + shaped stencil at the corner (domain A ∪ B or
a∪b in Figure 5.3), i.e., the �eld information c is not available, while B and
b is. For slope limiting, a conservative estimate (guess) on the slopes has
to be made. �e problem does not occur in a �rst order scheme where no
reconstruction takes place.

5.5 WENO

As an alternative to the MUSCL scheme, an arbitarily accurate ADER-WENO
�nite-volume schemes can be used in the ExaHyPE prototype. �e weighted
essentially non-oscillatory (WENO) approach does not clip local extrema, in
contrast to the second-order TVD method. For �uid dynamics (Chapter III)
the TVD scheme was found to be more robust than the WENO scheme.

�e (ADER-) WENO scheme scheme shares many aspects of the (ADER-)
DG schemes presented in the subsequent Section 6. �e spacetime predic-
tor solution qh is however computed from an initial conditition given by a
WENO reconstruction polynomialwh(x, tn) computed from the cell aver-
ages ūni,s via a multi-dimensional WENO reconstruction operator detailed
in [167, 176, 257]. �e values at the cell interfaces q−h and q+

h are computed
as the boundary extrapolated values from the le� and the right subcell ad-
jacent to the interface.
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�e nonlinear WENO reconstruction works as follows: for each subcell
Ωi,s we compute several reconstruction polynomials wk

h(x, tn) requiring
integral conservation ofwk

h on a set of di�erent reconstruction stencils Ski,s,

1

|Ωi,j |

∫

Ωi,j

wk
h(x, tn)dx = ūni,j ∀Ωi,j ∈ Ski,s . (5.8)

�is system is solved via a constrained least-squares algorithm requiring
at least exact conservation in the cell Ωi,s itself [171]. From the set of re-
construction polynomials wk

h, the �nal WENO reconstruction polynomial
wh is obtained by using a classical nonlinear weighted combination of the
polynomials [171, 257]

wh(x, tn) =
∑

k

ωkw
k
h(x, tn), with ωk =

ω̃k∑
l

ω̃l
and ω̃k =

λk
(σk + ε)r

,

(5.9)
where the oscillation indicators σk are computed from

σk :=
∑

l≥1

∫

Ωi,s

∆x2l−1
i,s

(
∂l

∂xl
wk
h(x, tn)

)2

dx . (5.10)

�e small parameter ε in (5.9), which is only needed to avoid division by
zero, is typically set to ε = 10−14 and the exponent in the denominator is
chosen as r = 8. �e linear weights are λ1 = 105 for the central stencil
(i.e., k = 1), while all other stencils (i.e., k > 1) have linear weight λk = 1.
�is choice corresponds also to the one made in [171].

In a practical implementation it is convenient to write also the WENO
reconstruction polynomials in terms of some reconstruction basis functions
ψl(x) aswh(x, tn) = Ψl(x)ŵn

l . Here, following [167], the basis functions
Ψl are de�ned in the same way as the Φl in Section 6.1, i.e., as tensor prod-
ucts of Lagrange interpolation polynomials through the Gauss-Legendre
quadrature nodes.

6 Discontinous Galerkin schemes

Cell 0 Cell 1 Cell 2 Cell 3
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cell 0 Cell 1 Cell 2 Cell 3
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 6.1: A motivational cartoon of DG
in one dimensions: A N = 2 polynomial
withN + 1 DOF (a+ bx+ cx2) is embed-
ded in each cell. �e cell sizes and nodal
basis points (red) are arbitrary in this plot
and in general. �e shading indicates the
single cell averages (one DOF). �e upper
panel shows a continuous function while
the lower panel shows an example with
jumps/discontinuities at the cell interfaces,
yielding in a double valued function at the
cell interface. In contrast to high order FV,
the DOF really live within a single cell and
no reconstruction takes place which aver-
ages over multiple cells.

Galerkin methods (developed independently by Boris Galerkin and Walther
Ritz, but named only a�er Galerkin) are another method to discretize a PDE,
by casting it in a weak (integral) formulation where test function and solu-
tion are part of a Hilbert space. A �nite discretization is then achieved by
the approximative projection to a �nite-dimensional Hilbert space; a ma-
trix representation instead is achieved by �nding an orthogonal basis in
this function vector space. Formally this class of methods bear resemblance
to spectral methods and can share the same properties such as exponential
convergence. �us Galerkin methods are formally �nite element methods
which combine the advantages of spectral methods with grid-based meth-
ods.

Discontinous Galerkin (DG) schemes then again combine Galerkin meth-
ods with Finite Volume paradigms (Godunovs methods). DG methods can
be motivated as an extension to FV methods where a single cell average is
replaced by more degrees of freedom, such as a linear or quadratic approx-
imation of the real solution. As the particular feature, the approximations
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between the cells don’t have to be smooth/continous but can exhibit jumps
(Figure 6.1). Of course, in the continuum limit where the cell size goes to
zero while the number of cells goes to in�nity, these discontinuities are as
well de�ned as the discontinuity of Godunovs piecewise constant method
itself.

Given the concept of embedding information within a cell (or patch), DG
methods exhibit hp-adaptivity: Meshes can be re�ned both in terms of cells
(h-re�nement) or in terms of subcell degrees of freedoms (p-re�nement).
For classical grid h-re�nement, DG methods exhibit polynomial accuracy
(similar to FV/FD), while for subcell p-re�nement they exhibit spectral ac-
cuary.

In DG methods, the number of degrees of freedom p is naturally asso-
ciated to the order of the scheme. A major bene�t of DG schemes is the
need of only one ghost layer 23 at any order, due to the functional basis 23 Since DG uses a polynomial basis, the

concept of an integral number of “layer
cells” (as in FD/FV) makes no sense. One
ghost layer means, that the �eld values on
the lower-dimensional surface of the com-
putational domain need to be exchanged
within the corrector phase of the scheme
presented in Section 6.2. In a two dimen-
sional simulation on square elements, the
one dimensional polynomials on four ele-
ment border lines have to be exchanged. In
a three dimensional simulation on cuboid
elements, the two dimensional polynomi-
als on six element surfaces have to be
exchanged. No particular treatment is
neccessary for the edges/corners of the
squares/cuboids.

within one cell. �at provides optimal scalability and makes DG a�ractive
for large parallel problems, in fact explains the spreading of DG methods
in the Exascale era. �e price which has to be paid (in comparison to a
FV scheme) is primarily the complexity of an implementation which can-
not be underestimated. �e DG method will get intertwined with the way
how the grid is managed and how communication works. Arguable disad-
vantges of the DG method (compared to a FV method) are its apparently
larger memory footbringt, coming from the larger amounts of degrees of
freedom and, for explicit DG methods, the limitation on the timestep size (a
penalty of ∼ 1/2N where N is the degrees of freedom, compared to a FV
method). However, this criticism disregards the high order spectral conver-
gence which allows to describe smooth problems with orders of magnitudes
less cells then any high order FV method would allow to. A way to alleviate
the severe CFL timestep restriction is the use of semi-implicit DG schemes,
as those proposed, for instance by [193, 430].

DG methods have been proven to be non-linearly stable at all orders
and can be formulated covariantly [322]. Similar as Godunovs method, the
mathematical foundations are only well de�ned for �rst order PDEs, but
DG has been applied to second order PDEs.

It has taken nearly two decades for the DG methods to be extended to
general nonlinear hyperbolic systems, thanks to the groundbreaking works
of [140, 142, 143]. DG methods are reviewed in [139, 141, 144, 241, 242, 412]
whereas [163, 164, 175] provide the fundaments for the path-conservative
nodal semi-discrete ADER-DG methods which are presented in the follow-
ing.

6.1 Subcell structure in nodal DG schemes

In order to mathematically describe the DG structure, a couple of symbols
shall be introduced. �e computational domain Ω is fully covered by a �nite
numberNe of non-overlapping elements Ωi, also referd to as patches or cells
[266]. Especially the usage of the term cells stresses the close relationship to
FV methods. In d spatial dimensions, the cells are characterized by their in-
dividual size ∆~xi ∈ Rd and barycenter ~xi ∈ Rd. �e discrete solution (state
vector of the PDE) is denoted by uh and is de�ned in the space of tensor
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products of piecewise polynomials of degreeN in each spatial direction, 24 24 To clarify: u is the analytic solution
while uh is an approximation within the
restricted space of solutions which can be
represented by piecewise polynomials.

Furthermore, for the sake of a readable
notation, vector indices are now neglected
in favour of discrete indices and �ags.

uh(x, tn) =
∑

l

ûi,lΦl(x) := ûni,lΦl(x) . (6.1)

Here, obviously the spatial basis functions Φl(x) spawn the orthogonalNd-
dimensional function vector space UNh . In UNh , u has the components ûl in
each direction l ∈ Nd. ûl are the discrete components/degrees of freedom
of the solution which have to be stored.

�e spatial basis functions Φl(x) =
∏d
i=1 ϕli(ξi) are generated by the

one-dimensional basis functions ϕk(ξ) on a one-dimensional reference el-
ement with normal extend ξ ∈ [0, 1]. �e physical coordinates x ∈ Ωi are
mapped to the reference coordinates ξ ∈ [0, 1]d by

x = xi −
1

2
∆xi + ξ ·∆x . (6.2)

At order N (N +1 nodes):
Gauss-Legendre basis

N = 2:
N = 3:
N = 4:
N = 5:

Gauss-Lobatto basis
N = 2:
N = 3:
N = 4:
N = 5:

ξ = 0 ξ = 0.5 ξ = 1

Figure 6.2: Some Gaussian quadrature
nodal basis on the one-dimensional refer-
ence cell. �ese two examples have been
implemented in the ExaHyPE code.

In order to apply Gaussian quadrature, typically Legendre polynomi-
als are used for the basis functions ϕk(ψ) and ξi shall be the quadrature
nodes of the (N + 1) point Gauss quadrature formula. �e Gauss-Legendre
quadrature has the advantage of a diagonal mass matrix 25 . �e cost to pay

25 �e mass matrix is de�ned as Mij =∫
Φi(x)Φj(x)dx. An extensive discussion

of the consequences of a non-diagonal Mass
matrix and especially of Gauss Legendre
vs. Gauss Lobo�o in AMR codes is given
in [433].

is a non-uniform nodal basis (subcell grid structure), especially there is no
nodal point at the cell boundary 26 . In our implementation we also support

26 �is hides the double valued character
of the �eld value at the patch boundary at
the �rst glance, for instance when no poly-
nomial reconstruction is done in a naive
(Gauss-Legendre) vertex-interpolating vi-
sualization, as typically done when vizual-
izing DG results.

the Gauss-Loba�o quadrature with its uniformly distributed nodal points.
In this basis, there are always points on the cell boundary (Figure 6.2). �e
actual nodal basis is a pure technical decision and (except for the quadrature
rule) has no impact on the mathematical structure of the scheme, therefore
we assume the Legendre nodes in the following exposition whenever in
doubt. 27

27 See also [422] for a detailed discussion
of multidimensional quadrature.

�e orthogonal polynomials satistfy the interpolation propertyϕk(ξj) =

δkj . �anks to this nodal tensor product basis, the entire subsequent scheme
can be wri�en dimension for dimension, all higher-dimensional integrals de-
compose in a multiplication of one-dimensional integrals which can be eval-
uated on N + 1 DOF in each dimension.

To summarize, note again that the total number of quadrature points
{xmGP} in Ωi, as well as the total number of basis elements {φk}, is (N+1)d.

6.2 A path-conservative ADER-DG scheme

�e weak formulation of a �rst order PDE system (2.4) is recast as integral
equation by integrating over the control volume Ωi × [tn, tn+1],

tn+1∫

tn

∫

Ωi

Φk [∂tQ+A(Q) · ∇Q− S(Q)] ddxdt = 0 , (6.3)

where Φk ∈ UNh is a generic basis element out of the piecewise polynomials
of maximum degree N which are by de�nition allowed to be discontinous
across the element interfaces ∂Ωi. �e resulting jump terms have to been
properly taken into account. �is is done in our numerical scheme with the
aid of the path-conservative approach, �rst developed by Castro and Parés
in the �nite-volume framework [129, 357] and later extended also to the DG
�nite-element framework in [166, 169, 386]. In this ADER-DG framework,
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higher order in time is achieved with the use of an element-local space-
time predictor, denoted by qh(x, t), which is subject to later discussion. At
this point of the deviation, the solution Q will just be replaced by the local
predictor solution qh = Φk(x)ûnk . By integration of the �rst part in time,
and adding a surface �ux integral for the integral over system matrixA 28 , 28 A similar �ux is not even possible for

the source S because it is by construction
purely algebraic and must lack derivatives.

thus taking jumps between elements into account, the approximation to the
weak form solution (6.3) can be wri�en as

(
ûn+1
i,l − ûni,l

)∫

Ωi

ΦkΦl d
dx+

∫∫

Tn Ω◦i

Φk (A(qh) · ∇qh) ddx dt+

∫∫

Tn ∂Ωi

ΦkA
(
q−h , q

+
h

)
· n dd−1xdt =

∫∫

Tn Ω◦i

ΦkS(qh) ddxdt ,

(6.4)

where the �rst integral is a scalar product between two basis elements
(called “element mass matrix”, diagonal for the Legendre basis nodes), the
second integral collects the smooth part of the discrete solution in the in-
teriour Ω◦i = Ωi\∂Ωi 29 , the third integral collects the unsteady solution 29 �e volume integrals

∫
Ω◦ can be eval-

uated exactly in N th order with Gaussian
quadrature, since all functions under the in-
tegral are wri�en on the (N + 1)th nodal
basis.

across element interfaces on the surface ∂Ω and the fourth integral is the
source term volume integral which unterwent no special treatment thanks
to the purely algebraic nature of the source terms (lack of derivatives).

In order to distinguish the conservative and nonconservative �uxes, the
weak form (6.3) shall be expanded again, this time by using the PDE func-
tions F ij and Bijk inA = ∂F /∂Q+B,

(
ûn+1
i,l − ûni,l

)∫

Ωi

ΦkΦl d
dx−

∫∫

Tn Ω◦i

(∇Φk) · F (qh) ddx dt +

∫∫

Tn ∂Ωi

ΦkG
(
q−h , q

+
h

)
· ndd−1xdt

+

∫∫

Tn Ω◦i

Φk (B(qh) · ∇qh) ddxdt +

∫∫

Tn ∂Ωi

ΦkD
(
q−h , q

+
h

)
· n dd−1xdt =

∫∫

Tn Ωi

ΦkS(qh) ddxdt .

(6.5)
Note that the integrals in (6.5) for the nonconservative matrix B are the
same as for the system matrix A in (6.4). Here, the surface integral over
G was derived rigorously by partial integration of the volume integral over
∇ · F and mathematically, G = F . Similarly, D = B · ∇Q and A =

G + D. �e curly symbols indicate approximate Riemann solvers which
depend on the boundary extrapolated states on the le� q−h and right q+

h of
the interface 30 . In this work we mainly use the simple Rusanov �ux [395] 30 Here the discontinous nature manifests,

where the system state is really double val-
ued (at a single coordinate).G

(
q−h , q

+
h

)
· n =

1

2

(
F (q+

h ) + F (q−h )
)
· n− 1

2
|Λi|

(
q+
h − q−h

)
, (6.6)

where |Λi| = max{max
(
Λi(q

+
h )
)
,max

(
Λi(q

−
h )
)
} denotes the maximum

wave speed (eigenvalue) computed from both sides 31 . In contrast, the 31 Any other monotone numerical �ux
function could be used equally well, see for
instance [446] for an overview of di�erent
Riemann solvers

jump termD of the nonconservative product follows the path-conservative
approach [129, 149, 174, 357], the jump terms are de�ned via a path inte-
gral (line/curve integral) in phase space (state vector space) between the
boundary extrapolated interface states

D−
(
q−h , q

+
h

)
·n =

1

2




1∫

0

A(ψ) · nds


(q+

h − q−h
)
− 1

2
|Λi|

(
q+
h − q−h

)
,

(6.7)
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with a simple segment path ψ = q−h + s
(
q+
h − q−h

)
. Again, the line in-

tegral can be solved on Gaussian quadrature points. Note the similarity
between the conserved (6.6) and nonconserved �ux approximation (6.7). It
represents the extension of the Rusanov (or local Lax-Friedrichs) �ux to the
nonconservative case. Indeed, other more sophisticated schemes may be
used with the aim of reducing the numerical dissipation 32 . 32 see e.g., the HLLEM-type version

of [165], which is an extension of the
HLLEM �ux of [187, 235], or the path-
conservative Osher schemes forwarded
in [174].

Several notes shall be made at this point. First, the explicit formalization
of source terms containing derivatives as “nonconservative terms” (Sec-
tion 2.1) allows to take both contributions—the algebraic and di�erential
sources—into account in a Riemann solver, resulting in a more exact and
balanced scheme at computationally li�le extra cost. �e main advantage
of these path-conservative schemes is that they allow at least in principle
the construction of well-balanced numerical schemes that are able to pre-
serve particular steady-state solutions of the governing partial di�erential
equations exactly 33 . Second, it should be noted that the overall ADER-DG 33 �is is applied in Section III on page 72

to the GRMHD PDE for the �rst time.scheme presented here is (N + 1)th order accurate for smooth solutions.
Since the �nal algorithm is a purely explicit DG scheme, a CFL-type stability
condition on the time step holds in the form

∆tDG < C
∆x

d (2N + 1)

1

|Λi|
, (6.8)

with spatial patch size ∆x in d spatial dimensions, |Λi| the maximal wave
speed of the system, and 0 < C < 1 the CFL factor, which can be chosen
as large as C = 0.9. 34 34 For the results of a numerical von

Neumann stability analysis of ADER-DG
schemes, see e.g., [162, 167, 365].

6.3 Local spacetime predictor

�e element-local spacetime predictor solution qh(x, t) is computed from
the known discrete solution uh(x, tn) at time tn using a solution of the
Cauchy problem “in the small”, i.e., within a single cell, without consid-
ering the interaction with the neighbouring cell. For linear systems, the
Cauchy-Kovalewski procedure [172, 234, 436, 437, 445] is suitable, it avoids
a quadrature in time in favour of an iterative Taylor series (for which the
PDE system has to undergo an algebraic manipulation, this makes its appli-
catioin very hard for complex systems). For nonlinear systems, a �xed-point
Picard iteration is more suitable. 35 In the following, the solution is writ- 35 Picard’s method for solving an ODE

is based on the Picard-Lindelöf theorem,
be�er known as Cauchy-Lipschitz theo-
rem [16]. It is a simple iterative procedure
which is especially suitable in DG due to the
function base.

ten in a spacetime basis qh = Θk(t,x)ûnk with Θk(t,x) = φk0(τ)Φ(ξ) the
same nodal basis as before, but including time (which is mapped to a refer-
ence time τ = (t− tn)/∆t ∈ [0, 1]). Formally the procedure of multiplying
the PDE (2.4) by the new test functions Θk and integrating over Ωi × Tn
yields 36 36 (6.9) is (6.3) with Θk in place of Φk and

(anticipating) qh in place of Q.∫∫

Tn Ωi

Θk(t,x) [∂tqh +A(qh) · ∇qh − S(qh)] ddxdt = 0 , (6.9)

Again, an integration by parts of the temporal derivative part is done, but
in constrast to (6.4) or (6.5), no surface integrals are introduced since jumps
are not taken into account in this element-local prediction,
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∫

Ωi

Θk(x, tn+1)qh(x, tn+1)ddx−
∫

Ωi

Θk(x, tn)uh(x, tn)ddx−
∫∫

Tn Ωi

∂Θk(x, t)

∂t
qh(x, t) ddx dt

=

∫∫

Tn Ωi

Θk(x, t) (S(qh)−A(qh) · ∇qh) ddx dt . (6.10)

(6.10) is now a system ofN indepdent element-local equation systems (with
N the number of elements covering the simulation domain Ω). Each of these
equations can now be solved with a (discrete) �xed-point Picard iteration,
without needing any communication with neighbour elements [166, 167,
170, 444].

It should be stressed that the choice of an appropriate initial guess q0
h(x, t)

for qh(x, t) is crucial to obtain a computationally e�cient scheme. One can
either use an extrapolation of qh from the previous time interval [tn−1, tn],
as suggested in [467], or a second-order accurate MUSCL-Hancock method,
as suggested in [243]. For the initial guess, one can write a Taylor series ex-
pansion in time and then only needs to compute approximations to the time
derivatives of qh at time tn. A second-order accurate MUSCL-type initial
guess for for qh(x, t) is given by 37 37 Here ∂tu = L(u, ∂iu) is the right

hand side of the PDE, as in (4.1).

q0
h(x, t) = uh(x, tn) + (t− tn)L(uh(x, tn)), (6.11)

while a third-order accurate initial guess for qh(x, t) reads

q0
h(x, t) = uh(x, tn) + (t− tn)k1 +

1

2
(t− tn)

2 (k2 − k1)

∆t
, (6.12)

where k1 := L (uh(x, tn)) and k2 := L (uh(x, tn) + ∆tk1). For an
even higher-order accurate initial guess, continuous extension Runge-Ku�a
(CERK) schemes as proposed in [355] were adopted 38 Having an initial 38 For the use of CERK schemes as time in-

tegrators of explicit discontinuous Galerkin
schemes, see [213].

guess of the orderN chosen, it is su�cient to use one single Picard iteration
in order to solve (6.10) 39 . 39 In fact within the ExaHyPE code it was

found that theN th order CERK guess could
dramatically improve the parallelizability
of the code. �is is because a variable-
length �xed point iteration is hardly vector-
izable.

It should be remarked again that one-step ADER schemes, in constrast to
classical Runge-Ku�a time stepping, is particular well suited for AMR with
time-accurate local-timestepping (LTS), requiring only one communication
with neighbouring cells per timestep.

6.4 Finite-volume subcell limiter

�e ADER-DG scheme (6.5) is formally of order N + 1 for smooth solu-
tions, hence the method must be oscillatory for N > 0 in the presence of
discontinuities, since the scheme is linear in the sense of Godunov [218],
thus inevitably generating spurious oscillations (also known as the “Gibbs
phenomenon”). In order to cope with this problem, several a�empts have
been made, e.g., arti�cial viscosity [134, 236, 361], �ltering [372], hybridisa-
tion with �nite-volume/�nite-di�erence schemes for the selected “troubled
cells” adopting some sort of high-order slope-limiting procedures [51, 138,
246, 254, 284, 366, 367, 472].

In this section, a �nite volume subcell limiter technique shall be pres-
tende (�rst proposed in [170]), which is based on the multi-dimensional
optimal order detection (MOOD) [137, 158]. �e main advantage of this
approach is that the high-resolution properties of unlimited DG methods
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Figure 6.3: A cartoon which demonstrates
how a high order Discontinous Galerkin so-
lution/polynomial uh within a single patch
(red) is projected onto 2N + 1 �nite vol-
ume subcell averages (blue). �e projection
works in both ways, whereas the one from
the higher amount of degrees of freedom
(FV limiter) is called restriction. Figure mod-
i�ed from [170, 404].

are preserved thanks to the introduction of a subgrid level, which is used
for integrating the partial di�erential equations in troubled cells by means
of a more robust high-order accurate �nite-volume scheme. In the present
scheme, limiting is implemented on a per cell basis, i.e., either the whole cell
Ωi undergoes a treatment or no point within it. In order to encounter this
problem, adaptive mesh re�nement (Section 7.2) is necessary to localize the
limited cells sharply around the problematic spatial region. 40 40 For alternative subcell DG limiters, see

also [128, 198, 323, 415, 416].

Limiting criteria

Limiting can be applied a-priori (before an ADER-DG time step) or a-poster-
iori (a�er an ADER-DG time step, as an predictor-corrector approach). In
both cases, criteria are neccessary to decide wether limiting is neccessary.
A-priori criteria can be geometry-based 41 or depend on the state vec- 41 for instance: limit in the vicinity of a

spacetime singularity in a stationary space-
time, within the context of Einstein �eld
equations, Section II.

tor. 42

42 for instance, having reached a critical
value within an element Ωi.

A-posteriori criteria test the computed candidate solutionuh(tn+1,x) on
mathematical and physical admissibility criteria. Mathematical scenarios
that may violate the admissibility are the vicinity of steep-gradients or dis-
continuities, under-resolved �ow features or the presence of �oating point
errors 43 . Physical admissible criteria go along with the PDE properties 43 Floating point errors result in NaNs

(Not-a-number), a special number state
within the IEE754 number representation
which for instance occurs a�er dividing by
zero or a�er taking the root of a negative
number. Clearly, the user PDE has to be
sensitive on such events to generate NaNs.

and can be for instance low pressure and density conditions 44 , superlu-

44 �is particular example suggests that
vacuum regions in �uid dynamics should be
limited, which is in fact not favorable at all.

minal velocities, failure of recovering primitive variables from conserved
ones (examples taken from the GRMHD, Chapter III) or closeness to a sin-
gularity, indicated by a certain steepness of the curvature (example from the
CCZ4, Chapter II). Furthermore, the ExaHyPE code applies a relaxed discrete
maximum principle (DMP), which checks for an unphysical steepening and
reads

min
y∈Vi

(uh(y, tn))− δ ≤ uh(x, tn+1) ≤ max
y∈Vi

(uh(y, tn)) + δ , (6.13)

where Vi is the set containing the space-element Ωi and its neighbours that
share a common node with Ωi. In [168, 194], we choose the parameter δ in
(6.13) is as

δ = max

(
δ0 , ε×

(
max
y∈Vi

(uh(y, tn))− min
y∈Vi

(uh(y, tn))

))
, (6.14)

with typical values δ0 = 10−8 and ε = 10−7.

The coupled limiting ADER-DG scheme

In practice, each computational cell Ωi that has been marked for limiting is
split into (2N + 1)3 �nite-volume subcells, which are denoted by Ωi,s and



evolution eqations on the computer 36

that satisfy Ωi =
⋃
s Ωi,s (see Fig. 6.3). Note that this very �ne division

of a DG element into �nite-volume subcells does not reduce the timestep
of the overall ADER-DG scheme, since the Courant-Friedrichs-Lewy (CFL)
coe�cient of explicit DG schemes scales with 1/(2N + 1), while the CFL
of �nite-volume schemes (used on the subgrid) is of the order of unity [170,
195, 468, 470, 470]. �e discrete solution in the subcells Ωi,s is represented
at time tn in terms of piecewise constant subcell averages ūni,s, i.e., 45 45 as in Godunov’s scheme, eq. (5.1)

ūni,s :=
1

|Ωi,s|

∫

Ωi,s

Q(x, tn)dx . (6.15)

�ese subcell averages are evolved in time with any suitable �nite-volume
scheme. 46 46 See Section 5 for a presentation of �nite

volume schemes. �e ExaHyPE paradigm to
decide suitability is to assume that robust
�nite volume methods for a given problem
are understood and can be used as a safe
fallback in case of problematic DG solutions
which require limiting.

In fact, the limiting ADER-DG (or: hybrid) scheme can be understood as
a DG solver coupled to a FV solver, acting on the same grid. To do so, on
a limited patch, the “embedded” DG quadrature points are replaced by an
equally embedded �nite volume grid. �e resulting limited �nite volume
patch has a block-regular structure of (2N + 1) cells (see Section 7.1 about
block regular grids).

From the �nite volume scheme, a new piecewise constant solutionvh(x, tn+1)

given by the cell averages v̄n+1
i,s is obtained, from which the �nal, limited

DG polynomial as uh(x, tn+1) = R (vh(x, tn)) is reconstructed, where
R is the reconstruction operator associated with the projector P , so that
R◦P = I , with I the identity operator [170]. For the subcell �nite-volume
scheme a di�erent CFL stability condition applies and takes the form

∆tFV < CFL hmin

dNs

1

|λmax|
, (6.16)

with hmin the minimum cell size referred to the DG control volumes Ωi

and λmax = |Λi| the maximal wave speed of the system. Choosing Ns ≥
N + 1 is a natural requirement that allows to reconstruct the of degrees of
freedom of uh from the piecewise constant solution vh via R. Following
[170] we choose Ns = 2N + 1 so that ∆tFV = ∆tDG. �is choice allows us
to maximise the resolution properties of the chosen subcell �nite-volume
scheme and to run it at its maximum possible CFL number.

When considering time integration, in ADER schemes for nonlinear hy-
perbolic PDE, limiters need to be applied only once per time step, while in
Runge-Ku�a based MoL schemes, the limiter needs to be applied in each
Runge-Ku�a stage again 47 . 47 For a detailed comparison of Runge-

Ku�a and ADER �nite-volume schemes,
see [173] and [53], while Runge-Ku�a DG
and Lax-Wendro� DG schemes (the lat-
ter are very similar to ADER-DG schemes)
have been compared in [365], also con-
cerning computational performance. De-
tailed computational performance compari-
son between ADER-DG schemes and RKDG
schemes are also given in Appendix A3 on
page 127.

7 Grid meshing

�e issue of storing the data necessary for the presented numerical schemes
is tightly coupled to the representation of the numerical grid on the com-
puter. �is is a technical challenge continously addressed by computer sci-
entists, since computer architectures are evolving in time and di�erent as-
pects get important.

In this section, a couple of aspects are presented in a generic fashion,
i.e., there is no particular focus on FD, FV or DG methods and it is le� open
what the grid actually holds (point/vertex data, cell averages or cells with a
subcell structure).
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7.1 Block regular grids

Figure 7.1: A height-elevated plot of a scalar
�eld on a two-dimensional domain. �e
displayed grid structure reveals a unigrid
layout. Multiple patches are shown which
cover the physical domain, each having the
same resolution ∆~x. Color is used to distin-
guish the patches. Furthermore, the over-
lapping ghost zones are displayed in a dif-
ferent colour. Figure modi�ed from [121].

�e simplest grids are regular (or uniform, also refered to as unigrid), that
means each grid coordinate

~x =

d∑

i=0

xi∆x
i (7.1)

can be described by the constant vector of grid spacings ∆~x ∈ Rd and
integer position indices ~x ∈ Nd. �erefore, a �nite domain grid is fully
characterized by the grid spacings ∆~x and a description of the domain, for
instance ~x = ~x0 + xi∆x

i with o�set x0 and xi ∈ [0, N ]d with N being the
number of points.

Uniform grids can be Cartesian (unit squares, ∆xi = ∆x ∀i ∈ [1, d])
or rectilinear (all ∆xi may be di�erent from each other). �ey also may be
curvilinear, for instance in a cylindrical or spherical coordinates mapping.
In contrast, irregular grids are called unstructured and a priori a list of all
grid points must be stored.

Figure 7.1 shows the grid structure in an exemplaric setup how it is used
by the Carpet code, which is part of the EinsteinToolkit 48 . Carpet 48 See appendix B3 on page 138 for details

about the codes referenced in the main text.implements block regular grids, i.e., each of the displayed three blocks is
a regular grid. In practice, di�erent blocks are evolved in time by di�er-
ent processors/computers. For the implementation of the particular FD/FV
scheme, exchange of information at the boundaries of each block is necces-
sary, which is faciliated by a small overlap of the patches. Cells within the
overlapping region are called ghost cells. Figure 7.1 shows one layer of ghost
cells around each block.

7.2 Mesh refinement

Figure 7.2: Multiple Fixed Mesh Re�nement
layers (FMR) in Carpet, from [401]

Figure 7.3: Resolving a curve in a unigrid
(16 · 24 = 384 elements) vs. a local mesh
re�nement (quadtree, 6 + 12 + 48 + 96 =

166 elements) with the same resolution, but
only 43% storage. Adopted from [417].

Grid codes implement mesh re�nement in order to resolve local features
while being able to evolve a large spatial domain. As re�nement layers are
supposed to have smaller cells, they also have smaller maximum timestep
sizes (due to the CFL condition). A code with global time stepping evolves all
re�nement levels with the maximum timestep size of the �nest layer, this
typically leads to numerical dissipation in the coarser layers and is very
slow, as the coarser layers allow bigger timesteps. �erefore, a proper re-
�nement code implements local time stepping where each re�nement level
is evolved with the maximum time step possible locally. Depending on the
scheme and implementation, this requires prolongation (projection of �eld
values from the �ner to the coarser levels) and restriction (projection of �eld
values from the coarser to the �ner levels) in order to make use of the �ner
resolved data at the di�erent time levels.

�e Carpet code implements Fixed Mesh Re�nement (FMR), also refered
to as moving boxes or boxes in boxes. �e concept is visualized in Figure 7.2
where three re�nement levels are displayed (here without ghost zones). Re-
�nement layers can be ordered by their resolution, this motivates to collect
them in tree-structures [266]. Typically, codes restrict to a single re�ne-
ment factor k. Given a numerical scheme with convergence order α, the
convergence (re�nement) factor of the overall code will be kα.
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�e dynamical version of FMR is Adaptive Mesh Re�nement (AMR),
where the re�ned areas are created, moved and destroyed by a criterion
such as a treshold on a degree of freedom (Figure 7.3).

Dynamical load-balancing (of a dynamical AMR grid) is an open research
problem in computer science. A di�culty is to detect load inequalities, mov-
ing load between nodes and assessing the e�ectiveness of such an expensive
operation. A code with static load balancing (of a static AMR problem) can
circumvent this in advance by hand-cra�ed distribution of work.

1
st
 ref. level

0
th
 ref. level

3
rd
 ref. level

2
nd

 ref. level

Figure 7.4: �e space-tree structure of the
re�nement levels for a single element at the
coarsest level `0 is shown, corresponding
to the choice R = 3. Figure published in
[196].

Further aspects of mesh re�nement are the starting paradigm: For in-
stance, being a sane Octree code, the ExaHyPE code re�nes from a single
cell, that is, it is an AMR code by heart (Figure 7.4). In contrast, the ExaHyPE
prototype codes as well as Cactus start with an already re�ned unigrid. At
startup, this allows for Cartesian slicing which minimizes the surface of the
blocks right at the beginning but postpones the load balancing problem to
later re�nement steps.

7.3 Parallelization

Riemann

Corrector

STP

BC update

Plot

Riemann

Riemann

Corrector

STP

RiemannRiemannRiemann
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Figure 7.5: Idealized parallel task graph in
ExaHyPE. Modi�ed from [135].

Hyperbolic laws with �nite wave speeds invite to parallelize on the spatial
domain. Modern codes need to exploit parallelism on several hierarchies.
On the programming level, the HPC landscape is dominated by shared and
distributed memory parallelization (MIMD, multiple instruction, multiple
data) as well as vectorization (SIMD, single instruction, multiple data).

�e Cactus framework manages the distributed memory parallelization
internally by spli�ing up the simulation domain. �e split follows a tradi-
tional Cartesian domain composition. In Cactus, program modules (thorns)
allow for random read and write access to the grid, have to describe the nu-
merical schemes and the physics (PDEs). �ey need to implement shared
memory parallelization as well as vectorization. In contrast, the ExaHyPE

framework manages both distributed and shared memory parallelization,
so that users are only confronted with providing their PDE in a vectoriz-
able way 49 . Being an active research code for AMR, ExaHyPE implements 49 Section 15 provides a discussion of vec-

torized implementations of the CCZ4 for-
mulation of Einsteins Equations.

a number of state-of-the-art domain decomposition paradigms, for instance
it dimensionally reduces the computational domain by domain �lling curves,
thus mapping physical locality to memory locality. �is is useful for hyper-
bolic conservation laws where causality implies that signi�cantly seperated
spatial regions do not in�uence each other. �e mesh code in ExaHyPE is
called Peano (like the space�lling curve) and uses two coupled state ma-
chines (�nite automata) to couple a numerical scheme to the grid traversal
(Figure 7.6). �is formalization allows to optimize the code in numberous
ways (such as doing research on task based graphs, Figure 7.5) but locks
down the scheme to the prede�ned actions, prehibiting random access and
a�emps done in classical codes [457]. �is paradigm is called “principle of
loosing control” (or “Hollywood principle”, “inversion of control”) and is
typical for application frameworks.

Traversal automaton

In Out

Events
Modify
grid

Heap

User's automaton
(compute kernels)

Application specific
algorithmic steps

Multiscale grid
traversal

Figure 7.6: Cartoon of the Peano/ExaHyPE
architecture. Figure modi�ed from [457].

7.4 hp-refinement with ADER-DG and subcell limiter

�e ADER-DG algorithms with subcell �nite-volume limiter described above
has been here implemented on spacetime adaptive Cartesian meshes. De-
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tails on the used AMR algorithm are described in [177, 195, 468, 470, 470].
�e AMR strategy adopted is named cell-by-cell re�nement and consists
in providing a space-tree data structure [109, 177, 266, 456], whose leaves
correspond to the spatial elements Ωi used by the numerical scheme de-
scribed before. �e main alternative to a space-tree data structure is the
use of patches, [71, 72, 73], where a set of independent overlaying Cartesian
sub-grid domains (or patches) is introduced and activated when necessary.
In the AMR approach used in ExaHyPE, the numerical solution is checked
independently along every single space-element for an eventual recursive
re�ning or recoarsening process. In practice, starting from an initial Carte-
sian grid of re�nement level ` = `0 = 0, which is the basic mesh without
re�nement, the tree-type infrastructure of �ner re�nement levels is made
accessible. �e re�nement levels ` > 0 are built according to the so called
re�nement factor R, which is the number of smaller space-elements per
space-direction in which a coarser element is broken in a re�nement pro-
cess, or which are merged in a recoarsening stage. Note that choosing a
re�nement factorR = 2 would generate the well known quadtrees in two-
dimensional (2D) meshes and octree in 3D meshes. For an arbitrary re�ne-
ment factorR, general space-trees are obtained [109, 456].

Figure 7.7: An example of combination
of AMR and DG subcell reconstruction is
shown. �e limited cells (β = 1) Cn and
Cm are highlighted in red. �e simplest
way for the polynomial reconstruction be-
tween Cn and Cm elements is: (i) project
the piecewise constant solution from Cn to
the virtual child-element Cv (see Fig. 7.8);
(ii) do polynomial reconstruction along the
same re�nement level, between Cv and Cm.
Figure published in [196].

For practical purposes, a �nite number of re�nement levels is provided,
i.e., from the coarser ` = `0 to a �nest possible re�nement level ` = `max ∈
IN+

0 . �e re�nement/recoarsening process is driven by the standard Loehner
scheme [307], i.e., a prescribed re�nement-estimator function

χ(ϕ) =

√√√√√
∑
k,l (∂l∂kϕ)

2

∑
k,l

(
|∂kϕ|i+1+|∂kϕ|i

∆xi
+ ε |∂k∂l |ϕ||

)2 (7.2)

which is a function of discrete gradients and second derivatives of a scalar
indicator function ϕ = ϕ (uh(x, tn)) and by two thresholds χ+ and χ−

[195, 307, 468]. Elements are marked for re�nement whenever χ > χ+ and
for recoarsening whenever χ < χ−. Examples for the indicator function ϕ
in hydrodynamics are the rest mass density (ϕ = ρ), production of entropy
[147, 364, 405], the Lorentz factor, as well as geometric criteria (ϕ = ϕ(~x)).

To simplify the AMR algorithm, two neighbour elements are allowed to
belong either to the same level ` or to an adjacent re�nement level ` ± 1.
To each element in the tree we assign a basic element status which is

σi =





−1 , for the parent cells
0 , for active elements

+1 , for the virtual children

i = 1, . . . , Ntot, (7.3)

where Ntot is the total number of space-elements present in the tree. Note
that Ntot should be distinguished from the total number of active elements
NE , which are the leaves of the tree that de�ne the Ωi used in the numerical
scheme, and for which Ntot > NE holds in general. �e parent cells (σi =

−1) are those tree elements which contain active elements on a higher level
and �nally a virtual child cell (σi = +1) is a tree element which is contained
within an active cell that belongs to a lower and adjacent re�nement level
`− 1.
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DG-L2 proj. DG-L2 average FV proj. FV L2 average

P

R

P

R

ref. level `+1:

ref. level `:

DG, piecewise polynomial, uh FV, piecewise constant, vh Figure 7.8: Mapping of the numerical solu-
tion between the piecewise polynomialsuh
of the DG scheme and the piecewise con-
stant data vh of the �nite-volume scheme
as well as between two di�erent AMR-
levels ` and `+1. Figure published in [196].

Apart from the storage of �ux contributions from neighbour cells within
our high-order time-accurate local time stepping (LTS) algorithm [177], vir-
tual cells are also needed for high-order �nite-volume schemes to provide
the necessary data for polynomial reconstructions (TVD, WENO) on a given
re�nement level if two adjacent active cells belong to di�erent re�nement
levels; this is illustrated schematically in Fig. 7.7. �is strategy produces a
locally uniform grid around each cell and greatly simpli�es reconstruction.
Our strategy of generating a locally uniform grid around each cell is very
di�erent from the approach based on genuinely multidimensional CWENO
reconstructions proposed by [405].

�e dynamics of the numerical solution on virtual elements is given by
standard L2 projection (for virtual children) or averaging (for parent cells),
as depicted in Fig. 7.8, where the mapping between the chosen solution
spaces, piecewise polynomial (unlimited) or piecewise constant (limited),
and between two adjacent re�nement levels ` and `+ 1 is depicted.

Due to the possibility of handling a large range of spatial scales within
the same domain, corresponding to very di�erent CFL time restrictions, a
time-accurate and fully conservative local time stepping (LTS) has been im-
plemented in order to use the smallest admi�ed timestep only where nec-
essary, and a large timestep where it is allowed [177].

Within the ExaHyPE code, the adaptive mesh re�nement can further be
triggered by the �nite volume subcell limiter, which is always applied at
the �nest AMR level of the simulation. In such a case, a padding is applied
around the limited regions [135, 404].

8 Aspects of input and output on adaptive meshes and discontinous
Galerkin methods

For completeness, this section presents a few aspects of input and output
in a numerical time evolution code, especially in the context of dynamical
AMR and DG. �ese features were implemented for the ExaHyPE code.

8.1 In-situ initial data

Reading initial data on an AMR grid is more challenging then on a prede-
�ned grid, as local features in the initial data shall already be resolved, not
only features which appear a�er certain time during the evolution. In order
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to setup an AMR grid hierarchy which adaptively adopts to non-analytical
initial data, an AMR grid code needs to evaluate the re�nement criterion on
the ID.

One way to do this is to evaluate the initial state Q0(~x) on subsequent
grid levels until the required accuracy is gained. At the same time, in the
context of parallelism, an AMR code has to load balance the spawned space-
tree over the available processors.
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Figure 8.1: Cartoon of FD vs. DG deriva-
tives for initial data in one dimension. Each
panel shows the same exemplaric patch,
where a ��h order DG polynomial is em-
bedded on a Euler-Legendre nodal basis
(i.e., the �lled circles indicate the spatial po-
sitions where the �eld values are stored).
First panel: �e exemplaric �eld solu-
tion which is subsequently projected onto
the DG polynomial (green, second panel)
and subsequently di�erentiated (blue, third
panel). In contrast, the last panel shows
the cartoon of a �nite di�erencing stencil
for o�-grid computation of the initial data
around a requested point. Here, the ini-
tial data have to be provided at each bullet,
i.e., have to be provided �ve time as much
as in the DG derivative case.

�e paradigm shi� from a classical block-regular code (such as Carpet)
towards an AMR code (such as ExaHyPE) shall be demonstrated on an exam-
ple: As per de�nition, a-priori there is no grid, the evaluation of an initial
data (ID) subroutine has to happen locally for a given spatial point ~x. Typ-
ically, within this thesis, initial data itself are the numerical solution of an
elliptic PDE and therefore present on a certain grid. Reading in the data
from the ID code to the time evolution code typically results in interpolat-
ing between two grids.

As soon as non-local computations are neccessary, this a�emp fails. An
example are initial data available as solution of a second order elliptic PDE
but to be evolved with a �rst order formulation of that PDE (as with the
formulation of Einstein �eld equations presented in section 14). In this case,
auxilliary �elds ai = ∂iφ for some �eld φ have to be computed, and the
derivative operator is nonlocal by de�nition.

�e two solutions are either to precompute the auxiliary �eld also on the
initial data code grid, or to compute them on-demand (in-situ). �e later
option is preferable to have point-wise access to the initial data in the time
evolution at any time. For computing derivatives, in ExaHyPE we chose two
approaches (Figure 8.1): Patchwise, using the DG derivatives (which can be
thought of a semi-local a�empt) or o�-grid with �nite di�erences.

8.2 In-situ postprocessing

Within the time evolution codes presented so far, it is common practice to
write out the system state also during the time evolution (and not only at
its arbitrary end). �is outpu�ing is done repeatedly by a time or iteration
criterion (formulated for instance as “write every N th iteration” or “write
every ∆t”), but any other kind of query based plo�ing can be imagined.
50 �e concept of a writeout is to store the current snapshot u(t,x) for 50 We use the terms plo�ing, writing,

dumping of data synonymously.a given time t permanently, while it is neccessarily erased at one point in
an evolution scheme which thrives to have a constant memory need during
time evolution.

When it comes to the writeout phase, any kind of postprocessing can be
done. �is term shall be de�ned by a local mapping f : Ωn → Ωm which
maps the solution vector u(x) at a �xed given time t to a vector of wri�en
quantitiesw(x) on the spatial d-dimensional simulation domain Ω 51 . One 51 �is mapping can be non-locally ex-

tended to allow for derivatives, such as
w(x) = f(u(x), ∂iu(x), . . . ).

can imagine that w = f(u) is computed either during the time evolution
(“online”), in order to write out only the mapped state vector, or a�erwards,
so u is wri�en and f(u) is computed in an o�ine postprocessing step.
Online post processing might save a lot of computing ressources if m� n

and f is computationally cheap.
Reductions or volume/surface integrals can be modeled with a mapping
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g : Rd×n → Re×m, where e < d is the dimensional reduction and again
m < n stands for a lossy mapping of the solution vector to less degrees
of freedom. For the highly symmetric spacetimes of compact objects, as
presented in the next chapters, simple 1D and 2D cuts of the Cartesian co-
ordinate systems on the axis are typical dimensional reductions, while L1,
L2 andL∞ (volume) integrals are evaluated on the whole space and provide
“0D” scalar output. Surface integrals over an arbitrary surface (de�ned by
its normal vector �eld Si) are technically more complex to implement but
nevertheless fall into the class of mappings g.

8.3 Visualization of ADER-DG simulations

When simulation data should be stored permanently, a well-de�ned �le for-
mat provides interoperability between di�erent (possibly postprocessing)
codes. �e ExaHyPE grid structure can be casted as block regular : �e DG
polynomials in each patch can be sampled on a unigrid, without loss of accu-
racy (i.e., by keeping the number of nodal points the same). �is is the basic
idea of the implementation of the CarpetHDF5 �le format within ExaHyPE,
which was originally developed for Carpet [380].

While the CarpetHDF5 52 �le format is tailored to the memory layout 52 HDF is short for “Hierarchical Data For-
mat” and is a container �le format for sci-
enti�c data, especially multidimensional ar-
rays. In principle, the propsed discussion
is independent of the container �le format.
See [404] for details about the �le formats.

In contrast to the formats discussed in the
main text, VTK (“Visualization Toolkit”) is
a widely supported standarized format for
describing higher dimensional geometries.
ExaHyPE can write VTK �les, but these �les
are only optimized for interoperability.

of Carpet, where block regular components are sized in order to match one
parallel rank (i.e., a MPI process), in ExaHyPE the patches are kept inten-
tionally small to hold a single DG polynomial. �erefore, the number of
patches per dimension is typically one to two orders of magnitude larger in
Carpet grids compared to ExaHyPE grids, and the amount of meta data in
the CarpetHDF5 �le format dominates over the payload data. In this con-
text, the term “meta data” refers to the description of the grid structure and
component geometry, while “payload data” are the actual �eld values. �is
property makes the CarpetHDF5 format especially ina�ractive in ExaHyPE

as a volumetric �le format (i.e., in three spatial dimensions). 53 53 �e structure-of-array/array-of-
structure representation of �elds is the
underlying di�erence between Carpet
(basically storing (Q0(~x), Q1(~x), . . . ) and
ExaHyPE (storing ~Q(~x0), ~Q(~x1), . . . )).
�is is also the main di�erence between
the Carpet �le format and the tailored
Peano block regular �le format [404].

9 Summary

In Chapter I, all the ingredients for a new code developed within this thesis
were proposed. At the very heart, it is a coupled evolution scheme which
uses a local ADER-DG scheme which is by construction communication
avoiding and thus suitable for the next generation of machines, in contrast
to traditional schemes, as well as an undemanding traditional Finite Volume
scheme, which is however time variation diminishing and suitable to evolve
a solution at low order. �e infrastructure for running three-dimensional
astrophysical simulations was presented, and it will be brought to life in
the subsequent chapters II on the facing page (with general relativity) and
chapter III on page 72 (with hydrodynamics).
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chapter

IIA first-order formulation of the Einstein equations and its
solution with DG schemes

�is chapter summarizes the e�orts of writing Einstein Field equations (EFE)
[188, 189] in a way specially suitable for high (convergence) order numerical
integration, with the numerical schemes presented in chapter I. For an intro-
duction into the problem and a review of previous work, see Section 0.2 on
page 13. �is chapter relies partially on the coauthored publications [168]
as well as [273].

10 Motivation: The two body problem of GR

Exact solutions of Einstein Field equations are “rare” [148] and well known
solutions are highly symmetric spacetimes. Two astrophysically relevant
examples are the stationary Kerr black hole (two Killing vectors: rotational
/ azimuthal and in time direction) and the static TOV solution of an isotropic
�uid in equilibrium (spherically symmetric, thus three orthogonal spacelike
Killing vectors) 1 . 1 �e TOV solution is refered here synon-

myously to as TOV star or neutron star.
Particular spacetimes are introduced in

the benchmark sections, for instance the
Kerr(-Schild) solution in Section 16.4 on
page 67 and the TOV solution in Sec-
tion 25.3 on page 93.
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Figure 10.1: Practicability/availability dia-
gram of the two body problem in GR with
the parameter range archieveable with ap-
proximations.

Being a nonlinear theory where the superposition principle no longer
holds (in contrast to classical and quantum mechanics), the two body prob-
lem in (full) general relativity (GR) is nontrivial. �at is, there is no way of
analytically solving Einstein �eld equations exactly for a spacetime hold-
ing two compact objects (black holes or neutron stars). Instead, all a�emps
to �nd such spacetimes are using approximations which however can be
subsequently re�ned to converge to the real solution. �e two major ap-
proximation scales are (1) the mass ratio M1/M2 of the two objects and (2)
the compactness C = M/R of the system, with R the object seperation
and M = M1 + M2 the total spacetime mass [111, 328, 453]. Due to the
virial theorem, this scale is similar to v2/c2 with the characteristic velocity
v of an object in the binary system.

It is popular to inspect the two-dimensional space spanned by these two
parameters in a diagram (Figure 11.1): Two perturbation theories cover ei-
ther the small compactness or the high mass ratio regime. �e �rst one is
the Post Newtonian (PN) expansion of EFE where the velocity ratio is small
compared to the speed of light. �e second one are gravitational self-force
corrections [454] which correct around an in�nite mass ratio (static approx-
imation of the heavier object / test particle on a geodesic in an external
metric). Being analytic theories which approximate Einstein equations, for
a given order of approximation, these theories fail to describe a binary sys-
tem with high mass, �nite extend, rapid rotation. In order to describe this
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strong gravity regime correctly, Einstein equations must be solved with-
out simplifying approximations. �e answer from numerical relativity (NR)
is to approximate the spacetime itself instead of the �eld equations. �e
mathematical approach is no more analytic but numerical, working on dis-
cretized �elds, whereas the “full” Lagrangian is solved, without the (com-
putational/mathematical) need for a simpli�cation. 2 In practice, however, 2 It is interesting to do an excursion to

the other popular nonlinear theory in high
energy physics, since there are similar ap-
proximations done: �antum chromody-
namics (QCD), the special relativistic quan-
tum theory of the strong force, part of the
Standard Model of elementary particles and
suitable for describing, for instance, fun-
damental baryonic and mesonic particles
hold together by the strong force. �e
two body problem in QCD in the con-
text of heavy quarks has a similiar pa-
rameter space with similiar solutions: In-
stead of Post Newtonian expansion, there
is non-relativistic QCD, while the heavy
quark e�ective theory is renowed for de-
scribing dynamic quarks in the presence of
in�netely heavy quarks. However, in the
relativistic regime of two quarks with sim-
ilar mass, the full QCD Lagrangian must
be solved to predict correct observables. A
successful theory to do so discretizes space-
time (with periodic boundary conditions,
therefore referred to as a “la�ice”) where
a QCD Lagrangian (not neccessarily de-
scribing all �avours) is solved numerically.
�is research �eld is called La�ice QCD.
At the present, numerical relativity and lat-
tice QCD are the two major challenging
applications in high energy computational
physics.

it is a long way to recast the Einstein �eld equations in a hyperbolic way,
suitable for “time” integration, and the following Sections will provide an
insight into the approach used within this work.

�is broad-brush motivation for numerical approaches in �eld theory
disregards many successful a�emps of covering the whole parameter space
of Figure 11.1 analytically. In case of GR, there is the e�ective one body for-
malism which is able of an analytic treatment of the strong gravity regime of
two body spacetimes by taking into accounts results from PN and NR [110,
150]. In contrast, numerical relativity is the only approach to arbitrary
strong gravity spacetimes which works from �rst principles, i.e., without
any external input, and that can in principle cover the whole space.

11 The Cauchy Initial value formulation of GR

General relativity is invariant under the Lorentz (Lie) group, that makes it
a gauge theory. �e four degrees of freedom (DOF) from Lorentz group can
be cast in general smooth coordinate transformations x′µ = fµ(x) and this
invariance is known as general or di�eomorphism covariance. From the
4×4 = 16 components of Einstein equations, only 10 are independent, and
the gauge freedom removes another 4 DOF, thus 6 physical DOF remain.

�e ADM formulation (dating back to 1959 by Arnowi�, Deser, Misner
[37]) is an Hamiltonian formulation of Einstein �eld equations. 3 It allows 3 We will refer to the ADM formulation

synonymously to as the (Cauchy) initial
value problem formulation or the canonical
formulation of EFE.

to de�ne a time coordinate and thus to perform a time evolution on the or-
thogonal spatial coordinates (cf. Section 1 on Hamiltonian time evolution).
�e ADM formulation is one way to identify/�x the gauge degrees of grav-
ity by dimensional reduction and restricting Einstein �eld equations on the
lower-dimensional hyperspaces (e.g., D = 4-dimensional spacetime is re-
stricted on 3-dimensional hypersurfaces) 4 . Arbitrarily embedding (D−1)- 4 �e ADM split, or rather the ADM

canonical coordinates, are not a unique
choice. �e Ashtekar variables [38], which
rewrite three-dimensional slices into SU(2)
gauge �elds, are an example of a popular
di�eren choice which is actually the foun-
dation of loop quantum gravity [391].

manifolds within a D-manifold can be described by a vector �eld Nµ with
D − 1 degrees of freedom, thus this is a suitable method for gauge �xing.

�eD-dimensional spacetime remains now as a gauge orbit. If the vector
Nµ collects the gauge connections, one can arbitrarily select a direction (for
instance the �rst component of the vector Nµ) and call it “time”.

11.1 Foliation of spacetime

�e way to the classic 3+1 formulation of Einstein equations is typically
two-part: First, the geometry of foliations is speci�ed by introducing a num-
ber of tensors suitable for projecting four dimensional tensors onto the sub-
manifolds. Second, the projections are applied on Einsteins equations and
the resulting PDE system is discussed. �is approach is proven and part of
modern numerical relativity books such as Alcubierre [7], Bona and Palen-
zuela [91], Baumgarte and Shapiro [64], Gourghoulhon [222], Rezzolla and
Zano�i [385] or Shibata [408].
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Given arbitrary gauge connections Nµ = (α, βµ), time shall be de�ned
to advance along the vector tµ = αnµ + βµ. �is motivates to de�ne the
normal vector to the spatial hypersurfaces Ω as nµ = (1/α,−βi/α) 5 . 5 Actually tµ does not need to be timelike,

the only requirement is not to be tangential
to to the spatial hypersurfaces [7].
�is is because the gauge choices are ar-
bitrary (Nµ ∈ R) and i.e., a superluminal
shi� does not violate causality by principle.

�e line element shall commonly read dl2 = γijdx
idxj , the proper time

along the normal vector (Eulerian observer) dτ = αdt. �e induced three
metric is identi�ed as γµν = gµν + nµnν and the line element thus ds2 =

α2dt2 + γij(dx
i + βidt)(dxj + βjdt).

�e extrinsic curvature describes how the submanifold is embedded in
the outer space and can be derived asKµν = −1/2Lnγµν wie Lie derivative
along the normal direction n, which evaluates on purely spatial tensors as

Ln = (Lt − Lβ) /α = (∂t − βµ∂µ) /α . (11.1)

It is worth mentioning that the original ADM group had a fairly di�erent
notation [222], they derive the canonical conjugate momenta πij instead
of the extrinsic curvature Kij = −1/

√
γ(πij − 1/2γijπ

m
m). �e way 3+1

gravity is presented in modern literature basically follows York [465].

Figure 11.1: Cartoon for demonstrating the
slicing (foliation) of 1+1 spacetime. �e
�xing of gauge freedoms is arbitrary and
the shown example follows by intention
no standard gauge �xing choice in NR.
�e foliation geometry is de�ned in contin-
uum, this cartoon shows a number of di�er-
ent spatial hypersurfaces Σi, an exemplary
normal vector �eldline (blue) as well as
an exemplary coordinate �eldline (green),
determined by the time vector, which de-
composes into spatial (shi�) and temporal
(lapse) direction. �e lapse is the only spa-
tial vector (“living on Σi”), while the other
shown vectors are temporal. Since the vec-
tors are shown non-bended, they shall be
understood as in�nitesimal.

3+1 split of the Energy momentum tensor

�e normal vector nµ as well as the spatial metric γij are suitable for pro-
jecting four dimensional tensors into purely spatial or purely temporal ob-
jects. Before this “split” is applied to Einstein equations (Section 11.2), it
shall be applied to the Einstein source, i.e., the energy momentum tensor
Tµν . Following the standard de�nitions, the following four quantities, all
measured by the Eulerian observer, shall be de�ned:

E = nαnβTαβ the energy (momentum) density, (11.2)
Sα = −γµαnνTµν the energy (momentum) �ux, (11.3)
Sαβ = γµαγ

ν
βTµν the spatial energy momentum tensor and (11.4)

S = Sii its trace. (11.5)

11.2 3+1 split of Einstein Equations: ADM equations

�e ADM split of Einsteins �eld equations is most readily obtained by pro-
jection operators applied on EFE wri�en as Gµν − 8πTµν = 0 with the
Einstein tensor Gµν = Rµν + 1/2Rgµν and the Energy-Momentum-Tensor
Tµν . �en, a full projection onto the normal direction yields the Hamilto-
nian constraint equation

0 = nµnν(Gµν − 8πTµν) = R− tr(K2) + (trK)2 − 16π E := H (11.6)

Similarly, the three momentum constraints are derived by the mixed pro-
jection: 6 6 �e notation vα = (0, wa) shall indi-

cate that the le� hand side is four dimen-
sional, while the right hand side is a purely
spatial vector.

0 = γαβnγ(Gαγ − 8πTαγ) =
(
0,∇kKk

a −∇a trK − 8π Sa
)

:= Ma

(11.7)
H = 0 and Ma = 0 are the Hamiltonian and Momentum constraints, re-
spectively, and their deviation from zero (due to numerically introduced
errors) is a measure to assess the physicality of a system state.

�e full projection onto the spatial hypersurface gives an evolution equa-
tion for the extrinsic curvature,

γαβG
αγ = γαβ8πTαγ ⇔ LnKij = Eij , (11.8)
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with Eij = −1/α∇i∇jα+Rij − 2KijK
k
j +KKij − 8π

(
Sij −

1

2
γij(S − E)

)
.

�e de�nition Kµν = −1/2Lnγµν is already the evolution equation for γij ,

Lnγij = −2Kij . (11.9)

�e two evolution equations innµ direction can be transformed to evolution
equations using the “time” introduced in the previous section, i.e., (11.1).

�e four equations (11.6-11.9) are generally known as ADM equations.
With their 1+3 constraint equations and 6 evolution equations 7 , they have 7 γij and Kij are symmetric 3-tensors

with 6 DOF each, however they are conju-
gate variables and therefore hold the same
information.

the same 10 DOF as Einstein �eld equations.
It is worthwhile to emphasize at this point that the constraint equations

can be used as Lagrangian Multipliers, for instance was H already intro-
duced as Lagrangian multiplier in LnKij = Eij − γijH by York [465].
Obviously this does not change (continuum) physics, but the PDE structure
(system matrix) is a di�erent one.

�e ADM evolution equations are only weakly hyperbolic. �is can be
seen by rewriting them as a �rst order formulation, �xing the gauges and
showing that parts of the system are not diagonizable [7]. As discussed in
Section 2.2, weakly hyperbolic PDEs are not suitable for numerical integra-
tion since they are not well-posed.

11.3 Gauge fixing

gauge fixing conditions

gauge
orbits

Figure 11.2: Gauge �xing conditions must
cut every gauge orbit once. Every gauge or-
bit represents one physical solution which
is similar to another one. �is generic
sketch and language from gauge theory
can be mapped to GR/ADM language, a
physical solution is a particular coordi-
nate system/slicing of spacetime. Colorized
from [324].

In numerical relativity, gauge terms have to be �xed since they appear in
the ADM system (11.8) and a numerical treatment requires every variable
to be represented by a number.

Physically, the e�ect of gauge �xing in the ADM split is equivalent to
choose a reference frame in GR (as it �xes the same four DOF). Fixing the
lapse α determines the foliation and time coordinates (“slicing conditions”)
while �xing the shi� βi chooses the spatial coordinates. �e gauge freedom
can be used to move coordinates in a desirable way throught the simulation
domain which itself can make the three-dimensional evolution equations
more hyperbolic or more elliptic [222], but they can even be (dynamically)
evolved by a PDE and thus extend the overall evolution system 8 . 8 �at means their PDEs neccessarily

have to be taken into account when mak-
ing an eigenanalysis of the particular 3+1
formulation of Einsteins equation (refering
to modi�cation of ADM equations, as pre-
sented in the subsequent sections).

Slicing conditions

Slicing conditions can be time-locally de�ned by constraining ADM quan-
tities, for instance the maximal slicing condition where Ki

i = 0. �is max-
imises the volume of the spatial hypersurface (hence the name) and has
singularity avoiding features, i.e., α → 0 when t→∞. It yields an elliptic
equation for the lapse α which makes it unsuitable for time evolutions 9 . 9 �is is because the elliptic equation

(which has no time derivatives) has to
be solved at every timestep. �ere are
however approximations by parabolic laws
[407, 408].

Being maximal sliced is a property of a single hypersurface. In constrast,
slicing conditions which are de�ned via the lapse (or coordinates) charac-
terize a series of hypersurfaces and are not meaningful for single hyper-
surfaces [222], because in general the lapse has no meaning on a single
hypersurface 10 10 However, given a prescribed gauge-

�xing law, the lapse can be given meaning
even on a single hypersurface.

�ere is also the class of algebraic slicing conditions which directly deter-
mine the lapse function and do not require to solve a (di�erential) equation
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(at least not for constructing the initial data/initial slice). �e most simple
example of this class is geodesic slicing, where α := 1. It got its name from
the worldlines of Eulerian observers, which can be shown to be geodesic.
�eir eigentime τ = t is equivalent to coordinate time.

Harmonic slicing is the most likely a gauge which is comparable to Lorentz
gauge (∂µAµ = 0 with gauge �eld Aµ in electrodynamics and related �eld
theories). It can be de�ned as imposing the gauge ∇µ∇µxα = 0 on the
coordinates. �is translates the Laplace equation ∇µ∇µt = 0 in 3+1 for-
malism, i.e., the time coordinate has a harmonic solution. It is a special case
of 1 + log/Bona Masso slicing, which is given by [88]

(∂t − Lβ)α = −(K −K0)α2f(α) (11.10)

where f(α) = 0 gives geodesic slicing, f(α) = 1 gives harmonic slicing
and f(α) = 2/α gives “1+log”-slicing, which gets it name from the special
case β = 0 where (11.10) reduces to ∂tα = ∂t ln |γ| which has the solution
α = 1 + ln |γ|. 1+log slicing has even be�er singulatiry avoidance prop-
erties then harmonic slicing but can penetrate horizons (in Schwarzschild
spacetime), furthermore it mimics maximal slicing. Here, a formulation
with K0 = K(t0) the extrinsic curvature trace at beginning of the sim-
ulation is given, which can help to preserve maximally sliced initial data.
Most worth mentioning, (11.10) is a hyperbolic conservation law for the
lapse, which makes it an interesting addition to a 3+1 evolution system.

Spatial gauges

Fixing the temporal gauge freedom α determines the arrow of time at any
spatial hypersurface, since time is de�ned di�erentially between spatial hy-
persurfaces. Instead, �xing the three gauge freedoms βi determines only
the propagations of coordinates between the hypersurfaces but leaves the
choice of coordinates for instance at the initial data hypersurface undeter-
mined. �is is because the gauge connections (α, βi) are only meaningful
quantities inbetween two spatial hypersurfaces 11 . 11 In fact, there exist also full spatial

coordinate-�xing choices but they are not
discussed here.

Similar to the geodesic slicing, there is the Eulerian gauge βi = 0 as
then xi =const are the worldlines of an Eulerian observer. As soon as the
spacetime is non-static, be�er more tailored spatial coordinates might be
wanted. One example are minimal distortion gauges which try to minimize
the change of the (conformal) 3-metric. �ey yield in an elliptic equation for
the shi�. However, minimal distortion gauges are interesting for the wave
zone in a merger event, basically because they are adapted to the way how
gravitational waves are de�ned and extracted (Appendix A6).

Most interesting for this monograph are the Gamma freezing and Gamma
driver shi� conditions. �e �rst one is a simpli�cation of approximative
(pseudo) minimal distortion gauges and can be formulated as 12 12 Here, the tilde in γ̃ and Γ̃ indicate

conformal quantities as introduced in Sec-
tion 12 on the next page. Especially, the
contracted Christo�el symbol is an evolu-
tion quantity in the BSSNOK system.

∂tΓ̃
i = 0, with Γ̃i := γ̃jk

(
Γ̃ijk − Γ̃ijk

)
(11.11)

An elliptic equation for the shi� can be derived which must be ful�lled. By
further modifying the minimal distortion law, a parabolic [9] and eventually
a hyperbolic [6, 87, 304] alternative has been found, which reads in �rst
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order formulation

∂tβ
i =

3

4
bi + βk∂kβ

i and ∂tb
i = ∂tΓ̃

i − ηbi + βk∂kb
i (11.12)

with a positive function k, a dissipation/damping coe�cient η and bi the
auxilliary �eld required for the �rst order rewrite [103, 451]. Typical values
are k = 3/4 and η = 1 or η ∼M/M0 with M the ADM mass measured in
multiples of the unit massM0 (i.e.,M0 = M� in astrophysical spacetimes).

�e gamma driver shi� condition turned out to be very successful for
moving puncture solutions and is, as part of the BSSNOK equations as pre-
sented in the next section, an “industry standard” for stable general rela-
tivistic evolutions of compact object mergers.

12 The BSSNOK equations

�e Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) for-
mulation [63, 100, 336, 411], is a hyperbolic formulation of Einsteins Equa-
tions in the 3+1 split. Hyperbolicitiy is archived with several “tricks” added
to the ADM system. �ese are primarily a conformal transformation of
the ADM state variabels γij ,Kij → γ̃ij , Ãij , the addition of the constraint
equations H = Mi = 0 to the evolution equations, the addition of slicing
conditions and Gamma driver to the evolved equations and the seperate
evolution of several quantities such as the extrinsic curvature trace K , a
contracted Christo�el symbol and the conformal factor. �e evolved vari-
ables of the BSSNOK system are therefore

γ̃ij := e−4φγij , Ãij := e−4φ [Kij ]
TF

:= e−4φ

(
Kij −

1

3
γijK

)
,

Φ :=
1

12
ln(γ) , K := γijKij and Γ̃i := γ̃jkΓ̃ijk ,

(12.1)
where γ̃ij is the conformal 3-metric,

Γ̃ijk :=
1

2
γ̃ab (∂j γ̃kb + ∂kγ̃jb − ∂bγ̃jk) (12.2)

are the Christo�el symbols associated with this metric and Γ̃i the freely
evolved contraction of this symbol. Φ is the conformal factor (see Sec-
tion 12.2) split o� the metric. Ãij is the conformal trace-free extrinsic cu-
rature tensor which is evolved in place of Kij . Furthermore, with suitable
slicing conditions and the Gamma driver, lapse α, shi� βi and an auxillary
�eld bi is evolved.

12.1 Covariance of the BSSNOK formulation

All new evolution �elds Ψ,K, Γ̃i are pure gauge quantities [63]. �e scalars
Ψ and K are derived from tensors, however Γ̃i does not transform like a
vector, since the connection coe�cients Γijk do not. �erefore, the BSSNOK
equations are not (fully) covariant. However, the di�erence between two
Christo�el symbols in a coordinate change transforms like a tensor �eld
[222]. �at is, if one introduces a background metric γ̊ij and a new metric
εij = γ̃ij − γ̊ij , then the Christo�el symbols of the new metric, ∆i

kl =

Γ̃ikl−γ̊ikl and the derived ˆ̊
Γi does so, too. For BSSNOK, a system like this was
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introduced in [392] in order to evolve Einstein �eld equations on spherical
and singular coordinate systems. 13 13 Appendix A4 deepens this issue for

the presented FO-CCZ4 formulation in this
chapter.

12.2 Definitions for the conformal factor

A key concept in BSSNOK is spli�ing o� a conformal factor, recognizing
that the three-metric γij and three-extrinsic curvature Kij are part of a
conformal equivalence class. Evolving a fundamental representation does
not only have an advantage in conformally �at spacetimes but in fact it
was shown by York [463, 464] that a traceless and tranverse tensor carries
the true degrees of freedom of the gravitational �eld [222]. �erefore, the
concept was picked up by various other formulations of Einsteins equations
and especially by various technical implementations, sometimes with subtle
di�erences in the de�nition, usually due to technical reasons (like positivity
preserving techniques) which promise be�er numerical stability. In order
to clarify the de�nitions, some intermediate symbols shall be de�ned. First
of all, any (rank 2) tensor, for instance the 3-metric γij , has a corresponding
tensor density γ̃ij = γn/2γij with weight n ∈ R and determinant γ =

det(γij) [222]. �e weight of the three metric is n = 2/3 and therefore, the
conformal factor Ω can be introduced as

Ω = γ1/3 so that γij = Ω γ̃ij (12.3)

In literature, the notation ψ4 ≡ Ω is more widespread 14 , thus γ = ψ12. 14 to be explicit, in ψ4, the ·4 is an expo-
nent, not an index. �is symbol should not
be mixed up with the Weyl scalarψ4, where
the ·4 is really an index.

�e following three popular but di�erent choices are widespread in litera-
ture 15 , formalized by a function f(Ω), or f(ψ4), respectively. It is then

15 �is choice is motivated due to the im-
plementation of all three variants in the
Antelope code (see Section 15 on page 61).

γij = f−1 γ̃ij . �e three choices f ∈ {ξ,Φ,W} are 16

16 Within the BSSNOK community, the
choice f = Φ is popular (and was made
here in the text), while for instance [408]
uses f = W and [244] uses f = ξ.

ξ(Ω) = Ω−1 = ψ−4 = γ−1/3 , then γij = ξ−1 γ̃ij (12.4)

Φ(Ω) = log Ω3 = logψ =
1

12
log γ , then γij = e4Φ γ̃ij (12.5)

W (Ω) = Ω−1/2 = ψ−2 = γ−1/6 , then γij = W−2 γ̃ij (12.6)

However, the choice of a particular f does not necessarily mean that this
quantity is evolved. In fact, the notation used for the FO-CCZ4 system (Sec-
tion 14) uses choice (12.6) but calls W (Ω) =: φ. However, φ is treated
as a primitive variable which is converted to a conserved variable where
log φ = logW = −1/6 log γ, which however does not meet any standard
de�nitions of (12.4-12.6)

12.3 The BSSNOK evolution equations

�e BSSNOK equations are given by (see [100] for a derivation)

(∂t − Lβ) Φ =
1

6
∂kβ

k − 1

6
αK (12.7)

(∂t − Lβ) γ̃ij = −2αÃij −
2

3
γ̃ij∂kβ

k (12.8)

(∂t − Lβ)K = α

(
ÃijÃ

ij +
1

3
K2

)
− γij∇i∇jα+ 4π(Skk + E) (12.9)

(∂t − Lβ) Ãij = e−4Φ [α(Rij − 8πSij)−∇i∇jα]
TF − 2

3
Ãij∂kβ

k + α
(
KÃij − 2ÃikÃ

k
j

)
(12.10)
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(∂t − Lβ) Γ̃i = γ̃kl∂k∂lβ
i +

2

3
γ̃jkΓ̃ijk∂lβ

l +
1

3
∇i∂kβk − 2Ãik∂kα+ 2αÃklΓ̃ikl + 12αÃik∂kφ−

4

3
α∇̃iK − 16παγ̃ijSj

(12.11)

(∂t − Lβ)α = −2αK (12.12)

(∂t − Lβ)βi =
3

4
bi (12.13)

(∂t − Lβ)bi = ∂tΓ̃
i − ηbi (12.14)

with the covariant derivative ∇̃with respect to γ̃ij 17 , Lie derivative Lβ = 17 Here, only terms ∇̃iA = ∂iA and
∇̃iBj = ∂iBj − Γ̃kijBk appear.βk∂k 18 , the trace-free operator [Tij ]

TF de�ned as in (12.1), and (E,Si, Sij)
18 Conventionally, the ADM system is

typically displayed as LnX = R(X)
while the BSSNOK and subsequent systems
are typically displayed as (∂t − Lβ)X =

αR(X).

being the spatial parts of the energy momentum tensor as de�ned in (11.2-
11.4). In this equation system, there are especially two very lengthy abbre-
viations used: First, the 3-Ricci tensor in (12.10) which is de�ned with the
conformal decomposition Rij := R̃Φ

ij + R̃ij as 19
19 Elaborate splits of “helper” quantities

(i.e., tensors derived from evolution quanti-
ties) will become even more present in the
FO-CCZ4 system.

R̃Φ
ij = Φ−2

[
Φ
(
∇̃i∇̃jΦ + γ̃ij∇̃k∇̃jΦ

)
− 2γ̃ij∇̃k∇̃kΦ

]
, (12.15)

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
[
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃kjl

]
,

and second, the time-derivative of Γ̃i in (12.14) which refers to (12.11).
�e evolution system also contains PDEs for the lapse α and shi� vector

βi, in this particular case the famous Bona-Masso type slicing conditions.
For the numerical intergration, a partly constrainted approach is used at

every time step to impose that 20 20 In practice, this means a modi�cation
of the state vector before or a�er every
timestep.det(γ̃ij) = 1 and tr(Ãij) = 0 (12.16)

Similiar to ADM equations, the BSSNOK system is �rst order in time and
second in space, for a proof of hyperbolicity it must be brought into �rst or-
der in time and space (this was done in [77] for a large number of slicing con-
ditions). Notably, for a �xed (non-evolved) shi� vector βi, BSSNOK is sym-
metric hyperbolic. Since its �rst publication, BSSNOK was quite successful
for its robustness in numerical simulations and got an “industry standard”
for numerical relativistic time evolutions of astrophysical spacetimes.

13 The Z4 family and CCZ4

�e Z4 formulation of Einstein �eld equations (EFE) was formulated by
Bona, Ledvinka, Palenzuela, Zacek [85, 86]. �ey recognize that in ADM
formalism, the discrimination of the constraint equations (11.6,11.7) ver-
sus the evolution equations (11.8,11.9) in a “naive” unconstrained evolution
breaks general covariance. In Z4, the derivative of a zero vector Zµ = 0 21 21 Zµ = 0 motivates the name: A “zero”

vector of length 4, hence “Z4”. �e vector
vanishes analytically but gets non-zero in
numerical simulations.

is added to the �eld equations as a generalized Lagrangian multiplier (GLM)
which then read in trace-reversed form [85]

Rµν + 2∇(µZν) = 8π

(
Tµν −

1

2
Tgµν

)
. (13.1)

�e �eld equations can also be derived from a minimal action principle [84].
�ey are �rst order in time, second order in space for the metric, �rst order
in space forZµ. 22 In the 3+1 split, withZµ = (θ/α, Zi), the two new evo- 22 �e actual evolution equations are

given later compact for all proposed mem-
bers of the Z4 family.

lution quantities for θ and Zi cannot be discriminated against the ones for
γij and Kij and thus general covariance is maintained. Notably, these two
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new evolution equations take the place of the ADM constraint equations,
because Zµ = 0 are four constraints and non-zero values of Zµ measure
the “physicality” of an approximated (numerical) solution. �is is a di�er-
ent measure for error than the regular ADM Hamiltonian and momentum
constraint (violations) (11.6,11.7) which of course still can be determined
similarly also in the Z4 system, independently of the Zµ vector 23 . �e re- 23 For a comparison of the quality of dif-

ferent formulations of EFEs, it is useful to
fall back to (H,Mi) as the “lowest common
denominator”, which always can be com-
puted.

sulting PDE system is then almost similar to the ADM equations (11.6-11.9),
namely

(∂t − Lβ) γ̃ij = −2αKij (13.2)

(∂t − Lβ)Kij = −∇i∇jα+ α
[
Rij − 2KijK

k
j + (K − 2Θ)Kij

]
− 8πα

[
Sij −

1

2
γij(S − E)

]
(13.3)

(∂t − Lβ) Θ =
α

2

[
R+ 2∇kZk + (K − 2Θ)K −KijK

ij
]
− Zk∇kα− 16πE (13.4)

(∂t − Lβ)Zi = α
[
∇j(Kj

i − δjiK) + ∂iΘ− 2Kj
i Zj

]
−Θ∇iα− 8πSi (13.5)

�e �rst order version of Z4 was brought into a conservative form and is
proven to be strongly hyperbolic [11]. �e main drawbacks of the Z4 formu-
lation is the lack of the Gamma driver (11.12), i.e., there are no good gauges
which result in horizon growth in black hole simulations.

13.1 Conformal Z4 (Z4c)

�e conformal Z4 (Z4c) version was developed as a conformal but non-
covariant extension to Z4 [75, 118, 244, 394, 458]. �e modi�ed EFEs

Rµν + 2∇(µZµ) = 8π(Tµν −
1

2
Tgµν) +κ1

[
2n(µZν) − (1 + κ2)gµνnσZ

σ
]

(13.6)
di�er from the Z4 equations (13.1) only by the algebraic damping terms on
the RHS, modulated by κ1 and κ2 which determine the damping amplitude
used to drive the growth of constraint violations to zero. In the 3+1 split
the Z4c formulation discard a number of terms which renders the evolution
equations non-covariant but very close to BSSNOK. �e resulting system is
provably strongly hyperbolic for usual gauge choices.

�e addition of the damping terms allows to advect and (if desired) damp
nonzero constraints which appeared during evolution. �e consequence is
of course that the numerical solution stays much closer to a physical one,
which is especially helpful for very long running simulations (compared to
the average wave speed, i.e., the speed of light, or the mass of the space-
time, respectively). �e typical text-book motivation for this mechanism
employs Gauss law in electromagnetism, i.e., preserving the solenoidal mag-
netic �eld ~∇ · ~B = 0, where the GLM is introduced as [153]

∂tB
i = R ⇒ ∂tB

i = R− ∂iψ (13.7)
∂iB

i = 0 ⇒ ∂iB
i = D(ψ) = c−2

cleaning∂tψ (13.8)

In this minimal example, there is an evolution equation for the vector Bi

with a spatial di�erential operatorR = R(Bi, ∂iB
j , . . . ). �e new evolved

scalar ψ couples the divergence freedom (∂iBi = 0) to the evolution equa-
tion, following a di�erential operator D. A hyperbolic choice for this oper-
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ator results in an advection quation for ψ. In a similar way, in Z4c, the four
�elds (Θ, Zi) play the role of ψ in this example. 24 24 See section 21.4 for divergence cleaning

techniques in magnetohydrodynamics.

13.2 Conformal and covariant Z4: (SO-)CCZ4

�e CCZ4 (conformal and covariant Z4) system was developed to address
the non-covariant property of Z4c [12]. �e derivation starts with the same
�eld equations (13.6) but do not discard terms at the 3+1 split. 25 25 �us, the property “covariant” in

CCZ4/Z4c is to be understood as “beeing
more covariant then Z4”. However,
as CCZ4 takes over the non-covariant
“conformal connection functions” Γ̃i

from BSSNOK (Section 12), CCZ4 is not
covariant. Appendix A4 brie�y presents
a fully covariant CCZ4 system which
implements the ideas of [392].

�e conformal transformation applied in CCZ4 is similar to the BSSNOK
one but usually given with a di�erent conformal factor (here f = W from
Section 12.2),

W := γ−
1/6 , K := γijKij ,

γ̃ij := W 2γij , Ãij := W 2 [K]
TF

,

Γ̃i := γ̃jkΓ̃ijk , Γ̂i := Γ̃i + 2γ̃ijZj ,

(13.9)

In CCZ4, the new symbol Γ̂i replaces Zi as evolution quantity, while Θ =

Z0 remains an evolution quantity.
�e full CCZ4 system in 3+1 split is given by [12, 13]

∂tγ̃ij = −2αÃij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k β

k + βk∂kγ̃ij , (13.10)

∂tÃij = φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi − 8πSij)]
TF

+ αÃij (K − 2Θ)

−2αÃilÃ
l
j + 2Ãk(i∂j) β

k − 2

3
Ãij∂k β

k + βk∂kÃij , (13.11)

∂tφ =
1

3
αφK − 1

3
φ∂kβ

k + βk∂kφ , (13.12)

∂tK = −∇i∇iα+ α
(
R+ 2∇iZi +K2 − 2ΘK

)
+ βj∂jK − 3ακ1 (1 + κ2) Θ + 4πα (S − 3τ) , (13.13)

∂tΘ =
α

2

[
R+ 2∇iZi − ÃijÃij +

2

3
K2 − 2ΘK

]
− Zi∂iα+ βk∂kΘ− ακ1 (2 + κ2) Θ− 8πα τ , (13.14)

∂tΓ̂
i = 2α

[
Γ̃ijkÃ

jk − 3Ãij
∂jφ

φ
− 2

3
γ̃ij∂jK

]
+ 2γ̃ki

(
α∂kΘ−Θ∂kα−

2

3
αKZk

)
− 2Ãij∂jα

+γ̃kl∂k∂lβ
i +

1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i + 2κ3

(
2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβi
)

+βk∂kΓ̂i − 16παγ̃ijSj − 2ακ1γ̃
ijZj , (13.15)

∂tα = −α2g(α) (K −K0 − 2Θ) + βk∂kα , (13.16)
∂tβ

i = fbi + βk∂kβ
i , (13.17)

∂tb
i = ∂tΓ̂

i − βk∂kΓ̂i + βk∂kb
i − ηbi , (13.18)

Here, again, the Gamma driver and Bona-Masso slicing conditions were
added, as in the case for the BSSNOK equations.

14 The first order CCZ4 equations (FO-CCZ4)

�e �rst order (FO) rewrite of the second order (SO) CCZ4 system, as in-
troduced in the previous section, is a neccessary step for proving the hy-
perbolicity of the SO-CCZ4 system as well as its implementation with �-
nite volume (Section 5 on page 26) or �nite element (Section 6 on page 29)
schemes. �e derivation of this big PDE system is elaborate and it takes a
full page to write down the PDE system with all the helper quantities itself.
A short version of the derivation is part of our publication [168].
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14.1 Introduction of the auxiliary variables and resulting ordering constraints

�e following 33 auxilliary variables are introduced, in order to collect �rst
spatial derivatives of metric terms, 26 26 �e naming and de�nitions of these

variables follows conventions seen in previ-
ous papers. For instance, the Z4 paper [85]
de�nes already Ak and Dkij in a �rst or-
der reduction of the Z4 equations to prove
symmetric hyperbolicity in harmonic slic-
ing. In that paper, the choices (like the log-
arithm in Ai and the factor 1/2 in the de�-
nition ofDkij ) were probably due to short-
ness of notation, while here we de�ne Ai
as the derivative of the logarithm for means
of positivity preserving (more on this in the
main text).

Ai := ∂i lnα =
∂iα

α
, Bik := ∂kβ

i ,

Dkij :=
1

2
∂kγ̃ij , Pi := ∂i lnφ =

∂iφ

φ
.

(14.1)

An immediate consequence of (14.1) and the Schwarz theorem on the sym-
metry of second-order derivatives are the following second order ordering
constraints [229], which read:

Aki := ∂kAi − ∂iAk = 0 , Bikl := ∂kB
i
l − ∂lBik = 0 ,

Dklij := ∂kDlij − ∂lDkij = 0 , Pki := ∂kPi − ∂iPk = 0 . (14.2)

Since Ãij is by construction trace-free, the following additional constraint
holds: γ̃ijÃij = 0, and thus

Tk := ∂k

(
γ̃ijÃij

)
= ∂kγ̃

ijÃij + γ̃ij∂kÃij = 0. (14.3)

�ese relations will be important later on in order to derive a strongly hyper-
bolic system in �rst-order form. Furthermore, from the constraint det(γ̃ij) =

1 and via the Jacobi formula

∂k det(A) = tr(det(A)A−1∂kA) (14.4)

on the derivatives of the determinant of a matrix, the following additional
algebraic constraints on the auxiliary variablesDkij is obtained (see also [101]):

γ̃ijDkij = 0 . (14.5)

From Eq. (14.5), another di�erential constraint follows, namely,

∂lγ̃
ijDkij + γ̃ij∂lDkij = 0 . (14.6)

In practical implementations, however, we have not found particular bene-
�ts from making use of this additional constraint in the FO-CCZ4 formula-
tion.

�e evolution equations for the auxiliary quantities are obtained by ap-
plying the temporal derivative operator ∂t to equations (14.1), by subse-
quently exchanging the spatial and temporal derivatives on the right-hand
side of the resulting equations and by making use of the PDEs for γ̃ij (13.10),
φ (13.12), α (13.16) and βi (13.17).

Many di�erent �rst-order formulations of the CCZ4 system are possible,
since any non-purely algebraic term in the original second-order system can
be wri�en as a combination of conservative terms and non-conservative
products (see [229, 245] for a parametric study of such families of systems).

Two extreme cases stand out: First, write as many terms as possible are
wri�en in a conservative �ux-divergence form (Eq. 2.2, but with a source
term that contains derivatives). For the �rst-order Z4 system, this was done
in [11].
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Qi Nonconservative product NCPa(Q) = Biba (Q)∂iQb Algebraic source Sa(Q) Eqn.

O
D

E-
A

D
M

lnα 0 βkAk−αg(α)(K−K0−2Θc) (14.10)

βi 0 sβkBik + s f bi (14.11)

γ̃ij 0 βk2Dkij + γ̃kiB
k
j + γ̃kjB

k
i − 2/3γ̃ijB

k
k − 2α

(
Ãij − 1/3 γ̃ijtrÃ

)
− 1/τ̃(γ̃ − 1) γ̃ij (14.12)

lnφ 0 βkPk + 1/3
(
αK −Bkk

) (14.13)

SO
-C

CZ
4

Ãij −βk∂kÃij + φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi)]TF
NCP

ÃkiB
k
j + ÃkjB

k
i − 2/3 ÃijB

k
k

1/3γ̃ij − φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi)]TF
SRC

+ αÃij(K − 2Θc)− 2αÃilγ̃
lmÃmj − 1/τ̃ γ̃ij trÃ −φ48π (Sij − 1/3 τ g̃ij)

(14.14)

K −βk∂kK +
[
∇i∇iα− α(R+ 2∇iZi)

]
NCP αK(K − 2 Θ c)− 3ακ1(1 + κ2)Θ−

[
∇i∇iα− α(R+ 2∇iZi)

]
SRC + 4π(S − 3τ) (14.15)

Θ −βk∂kΘ− 1/2 αe2
[
R+ 2∇iZi

]
NCP

1/2 αe2(2/3K2 − ÃijÃij)− αΘKc− ZiαAi − ακ1(2 + κ2)Θ −8πατ

+ 1/2 αe2
[
R+ 2∇iZi

]
SRC

(14.16)

Γ̂i
− βk∂kΓ̂i + 4/3 αγ̃ij∂jK − 2αγ̃ki∂kΘ

− sγ̃kl∂(kB
i
l) − s/3 γ̃ik∂(kB

l
l) − s2αγ̃ikγ̃nm∂kÃnm

2/3Γ̃iBkk − Γ̃kBik + 2α(Γ̃ijkÃ
jk − 3ÃijPj)− 2αγ̃ki (ΘAk + 2/3KZk)−16παγ̃ijSj

− 2αÃijAj − 4sαγ̃ikDnm
k Ãnm + 2κ3

(
2/3 γ̃ijZjB

k
k − γ̃jkZjBik

)
− 2ακ1γ̃

ijZj
(14.17)

bi −sβk∂kbi s(∂tΓ̂
i − βk∂kΓ̂i − ηbi) (14.18)

FO
-C

CZ
4

Ak
− βl∂lAk + αg(α) (∂kK − ∂kK0 − 2c∂kΘ)

+ s α g(α)γ̃nm∂kÃnm

− s α g(α)∂kγ̃
nmÃnm

− αAk (K −K0 − 2Θc) (g(α) + αg′(α)) +Blk Al
(14.19)

Bik
− sβl∂lBik − s

(
f∂kb

i − µ γ̃ij (∂kPj − ∂jPk)

+ µ γ̃ij γ̃nl (∂kDljn − ∂lDkjn)
) Blk B

i
l (14.20)

Dkij
− βl∂lDkij − s/2 γ̃mi∂(kB

m
j) − s/2 γ̃mj∂(kB

m
i)

+ s/3 γ̃ij∂(kB
m
m) + α∂kÃij − 1/3 αγ̃ij γ̃

nm∂kÃnm

BlkDlij +BljDkli +BliDklj − 2/3 BllDkij + 1/3 αγ̃ij∂kγ̃
nmÃnm

− αAk(Ãij − 1/3 γ̃ijtrÃ)
(14.21)

Pk βl∂lPk − 1/3 α∂kK + 1/3 ∂(kB
i
i) − s/3 αγ̃nm∂kÃnm

1/3 αAkK +BlkPl + s/3 α∂kγ̃
nmÃnm (14.22)

Table 14.1: FO-CCZ4 system (14.10-14.22)
wri�en in form (2.3), i.e., with a split of dif-
ferential contributions (le� column) and al-
gebraic contributions (right column). �e
full PDE reads ∂tQ+B(Q)∇Q = S(Q).
�e semantics of the colors is the fol-
lowing: All ODE-ADM quantities have a
helper counterpart at the bo�om of the ta-
ble (FO-CCZ4-exclusive quantities), which
is shaded in the same colour. �e colour-
ing of the SO-CCZ4 quantities is however
without meaning.

Second, similar to the ideas outlined in [7], making maximum use of
the �rst-order ordering constraints, so that the variables de�ning the 4-
metric (α, βi, φ and γ̃ij ) are only evolved by a nonlinear system of ordinary
di�erential equations (ODEs) and where the rest of the dynamics is wri�en
in terms of non-conservative products (Section 2.1). �e coe�cients of these
non-conservative products are only functions of α, βi, φ and γ̃ij and no
di�erential terms in these variables appear. �e dynamical variables of the
FO-CCZ4 system with Gamma-driver shi� condition are then: Ãij , K , Θ,
Γ̂i, bi (the bi vector is an auxiliary �eld used to write the Gamma-driver
gauge condition [7, 12]) and the auxiliary variables Ak , Bik , Pk and Dkij .

We will follow the second approach, i.e., the �nal system of 58 evolution
equations, evolving the state vector

QFOCCZ4 = (γij ,Kij ,Θ, Γ̂i, α, β
i, bi, Ai, B

i
j , Dijk,K, φ, Pk), (14.7)

which consist of

U = (γij , α, β
i, φ) 11 ODEs and (14.8)

V = (Kij ,Θ, Γ̂i, bi, Ai, B
i
j , Dijk,K, Pk) 47 PDEs (14.9)

and has a special structure discussed later in Section 14.3.

14.2 The FO-CCZ4 PDE system in the differential/algebraic split

�e most natural �rst-order formulation of the CCZ4 system is non-con-
servative and appears in the form (2.3), but with a vanishing conservative
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�ux. �erefore the system matrices Ai(Q) = Baji ∂aQj coincide with the
nonconservative matrices and (2.3) conincides with the quasi-linear form
(2.4). �e �nal system is given in equations (14.10—14.22) in table 14.1. �e
tabular form clearly seperates the di�erential component NCPa(Q) from
the algebraic component Sa(Q).

To obtain a strongly hyperbolic �rst-order system from the second-order
CCZ4 formulation of Alic et al. [12] given by (13.10)-(13.18) we systemat-
ically use the constraints (14.2) and (14.3) and make maximum possible use
of the auxiliary variables Eq. (14.1). In other words, our �rst-order CCZ4
system does not contain any spatial derivatives of α, βi, γ̃ij and φ any
more, but all these terms have been moved to the purely algebraic source
term S(Q) by using (14.1). �is has the immediate consequence that the
evolution equations (14.12—14.13) reduce to ordinary di�erential equations
instead of partial di�erential equations.

Indicated in red in the equations above are those terms that have been
added to the PDE to obtain an approximate symmetrization of the sparsity
pa�ern of the system matrices (see discussion in Sec. 14.3 and Fig. 14.2).

Second, in order to obtain the advective terms along the shi� vector in
the evolution equations of the auxiliary variables, we have used the identi-
ties (14.2). We stress that it is important to use the second-order ordering
constraints (14.2) in an appropriate way to guarantee strong hyperbolicity,
since a naive �rst-order formulation of the second-order CCZ4 system that
just uses the auxiliary variables in order to remove the second-order spa-
tial derivatives will only lead to a weakly hyperbolic system (see [229] for a
detailed discussion on the use of second-order ordering constraints in sec-
ond order in space �rst order in time hyperbolic systems). �ird, we have
found that the use of �rst and second-order ordering constraints alone is
not enough, but that one must also literally derive the PDE (14.21) for Dkij

from (13.10) by explicitly exploiting the fact that Ãij is trace-free via the use
of the constraint Tk by adding Eq. (14.3) to Eq. (14.21). Without the use of
Tk in Eq. (14.21), the system immediately loses its strong hyperbolicity (see
also [118] for a similar observation in the Z4c system). Once again, these im-
portant additional terms in the FO-CCZ4 system related to the constraints
(14.2) and (14.3) have been highlighted in red in Eqs. (14.12—14.22).

New constants

In addition to the parameters 27 of the second order CCZ4 system, the 27 We use the terms constant, parameter
and coe�cient synonymously in this con-
text. �e de�ning property of these kind
of variables is that they are not determined
by the evolution law (PDE). Otherwise, they
can be set freely and do not need to be con-
stant in time.

following ones are added in this formulation:

• the constant τ is a relaxation time to enforce the algebraic constraints
on the determinant of γ̃ij and on the trace of Ãij “weakly” (see the dis-
cussion in [12]).

• the constant e is a cleaning speed for the Hamiltonian constraint, follow-
ing the ideas of the generalized Lagrangian multiplier (GLM) approach
of Dedner et al. [153]. As the cleaning is a non-physical process, e > 1

is in principle allowed; this leads to faster constraint transport and thus
can be used to obtain a be�er satisfaction of the constraints for purely
numerical purposes, but e 6= 1 breaks the covariance of the FO-CCZ4
system.
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T TNCP(Q,∇Q): Nonconservative part TSRC(Q): Algebraic part Eqn.

O
D

E-
A

D
M

Γ̃kij 0 γ̃kl (Dijl +Djil −Dlij) (14.23)

∂kΓ̃mij γ̃ml
(
∂(kDi)jl + ∂(kDj)il − ∂(kDl)ij

)
−2Dml

k (Dijl +Djil −Dlij) (14.24)

Γkij 0
[
Γ̃kij

]
SRC
− γ̃kl (γ̃jlPi + γ̃ilPj − γ̃ijPl) (14.25)

∂kΓmij
+γ̃ml

(
∂(kDi)jl + ∂(kDj)il − ∂(kDl)ij

)

−γ̃ml
(
γ̃jl∂(kPi) + γ̃il∂(kPj) − γ̃ij∂(kPl)

)

[
∂kΓ̃mij

]
SRC

+ 2Dml
k (γ̃jlPi + γ̃ilPj − γ̃ijPl)

− 2γ̃ml (DkjlPi +DkilPj −DkijPl)

(14.26)

SO
-C

CZ
4

Rmikj

[
∂kΓmij

]
NCP − [∂jΓ

m
ik]NCP

+ [Γ]NCP
l
ij

[Γ]NCP
m
lk
− [Γ]NCP

l
ik

[Γ]NCP
m
lj

[
∂kΓmij

]
SRC − [∂jΓ

m
ik]SRC

+ [Γ]SRC
l
ij

[Γ]SRC
m
lk
− [Γ]SRC

l
ik

[Γ]SRC
m
lj

(14.27)

Rij [R]NCP
m
imj [R]SRC

m
imj

(14.28)

R φ2γ̃ij [R]NCP
i
i φ2γ̃ij [R]SRC

i
i

(14.29)

∇i∇jα α∂(iAj) αAiAj − α[Γ]SRC
k
ij
Ak (14.30)

∇i∇iα φ2γ̃ij [∇i∇jα]NCP φ2γ̃ij [∇i∇jα]SRC
(14.31)

FO
-C

CZ
4

Γ̃i 0 γ̃jl
[
Γ̃ijl

]
SRC

(14.32)

∂kΓ̃i γ̃jl
[
∂kΓ̃ijl

]
NCP

−2Djl
k

[
Γ̃ijl

]
SRC

+ γ̃jl
[
∂kΓ̃ijl

]
SRC

(14.33)

Zi 0
1

2
φ2
(

Γ̂i − Γ̃i
)

(14.34)

∇iZj 1

2
γ̃jl

(
∂iΓ̂

l −
[
∂iΓ̃

l
]

NCP

) 1

2
γ̃jl

(
0−

[
∂iΓ̃

l
]

SRC

)
+Dijl

(
Γ̂l − Γ̃l

)
− ΓlijZl (14.35)

Table 14.2: Helper quantities which are
used in Figure 14.1, in their explicit split
T (Q,∇Q) = TNCP(Q,∇Q) + TSRC(Q).
�e meaning of the colors is to guide re-
leated symbols, such as the Christo�el sym-
bols vs. their derivatives.

• the constant µ > 0 appears in Eq. (14.20) and allows one to adjust the
contribution of second-order ordering constraints.

• the constant s contributes to the evolution equations for bi, βi and Bik
and allows to turn on or o� the evolution of the shi�. For s = 0 we
have the simple gauge condition ∂tβi = 0, while for s = 1 the usual
Gamma-driver gauge condition is obtained.

• the constant c (not to be confused with the speed of light, which is set
to unity) allows to remove some of the algebraic source terms of the Z4
system, but its default value is c = 1, see [12].

• instead of evolving the lapse α and the conformal factor φ, we evolve
their logarithms, i.e., ln(α) and ln(φ). While not a standard choice, this
is a very simple method to preserve the positivity of the lapse and the
conformal factor also at the discrete level. Note also that when treating
black holes as punctures, the lapse would vanish at the puncture location
and its logarithm diverge. We therefore impose a positive lower limit in
our numerical implementation. Since we employ a DG scheme where the
solution in every element is represented by an interpolating polynomial,
in an element surrounding the puncture the polynomial might actually
reach values lower than the limit due to Runge’s phenomenon; 28 even 28 Runge’s phenomenon is the problem of

oscillatory polynomials of high degree on
equispaced interpolation points. Runge’s
phenomenon is for polynomial approxima-
tion what Gibb’s phenomenon is for Fourier
series approximation. It can be shown that
the Chebyshev nodal basis minimizes the
e�ect of Runge’s phenomenon.

in this case, however, the logarithm would not diverge.
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Differential/algebraic split of further quantities

�e PDE system (table 14.1) is completely split into the di�erential (NCP)
and algebraic (SRC) part. While a similar split was already made in the BSS-
NOK equations for the conformal decomposition of the Ricci tensor (12.15),
here it is even more prominent since also by de�nition the covariant deriva-
tive∇i as well as the cleaning vectorsZi must be split into their di�erential
and algebraic contributions. Table 14.2 holds equations (14.23-14.35) which
display all these quantities in their split, built up from the connection sym-
bols Γ̃kij and Γkij as well as their derivatives. 29 29 In a practical implementation (sec-

tion 15 on page 61), this complicated split
has to be carefully followed if one wants
to adopt a Riemann solver. In contrast,
a pure Finite-Di�erencing implementation
does not need the split. See section 15 for
details.

Here, we have again made use of the second-order ordering constraints
(14.2) by symmetrizing the spatial derivatives of the auxiliary variables as
follows:

∂(kAi) :=
∂kAi + ∂iAk

2
, ∂(kPi) :=

∂kPi + ∂iPk
2

,

∂(kB
i
j) :=

∂kB
i
j + ∂jB

i
k

2
, ∂(kDl)ij :=

∂kDlij + ∂lDkij

2
.

(14.36)

We also stress that in our FO-CCZ4 formulation, the Ricci tensor Rij is
directly calculated from the Riemann tensor Rmikj and the Christo�el sym-
bols and their derivatives ab de�nitionem, without making use of the typical
spli�ing of the Ricci tensor as e.g., used in [12]. We also compute the con-
tracted Christo�el symbols Γ̃i directly from their de�nition, without mak-
ing use of the fact that the determinant of γ̃ij is unity, since in general this
cannot be guaranteed to hold exactly at the discrete level, unless the alge-
braic constraints are rigorously enforced.

λ1 1

λ1 1

λ1

λ2 1

λ2

λ3

. . .

λn 1

λn


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Figure 14.1: Invertable Jordan blocks are
the neccessary condition for inverting the
large FO-CCZ4 system matrix. �e small-
est possible uninvertable Jordan block is of

order two, such as A =

(
1 1
0 1

)
or B =

1 − A. It sustains the invertability of the
whole system (in the shown �gure for in-
stance with λ2 = 1).

From a more formal and mathematical point of view, the additional use
of the second-order ordering constraints (14.2) and the constraint Tk (the
terms colored in red) can be motivated by looking at the structure of the
sparsity pa�ern of the system matrix A · n with and without the use of
these constraints. In Fig. 14.2 we report the sparsity pa�ern of the system
matrix in the normal direction n = 1/

√
3(1, 1, 1) for the Gamma-driver

shi� condition and the 1+log slicing condition for a randomly perturbed �at
Minkowski spacetime, neglecting all matrix entries whose absolute value
is below a threshold of 10−7. �e blue dots represent the original sparsity
structure without the use of the second-order ordering constraints (14.2) and
without using the constraint (14.3), while the combination of the blue and
the red dots shows the sparsity pa�ern a�er the terms colored in red have
been added to the PDE system. Our approach for �nding a suitable form of
the ordering constraints to be added is based on approximate symmetrization
of the sparsity pa�ern of the system matrix, in order to avoid Jordan blocks
(Fig. 14.1), which cannot be diagonalized. Such Jordan blocks are evident in
the sparsity pa�ern given by the blue dots alone in Fig. 14.2.

We are not aware of works in which the constraint Tk has been used in
conformal �rst-order hyperbolic formulations of the 3+1 Einstein equations,
but its e�ect becomes rather clear from Fig. 14.2. It is also directly evident
from Fig. 14.2 that the �rst 11 quantities γ̃ij , α, βi and φ are only evolved
by ODEs and that the entire system does not depend on spatial derivatives
of these variables, since all entries in the �rst 11 rows and columns of the
system matrix are zero.
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Summary of key ideas to archieve strong hyperbolicity

Summarizing, the key ideas that have been used in order to obtain the
strongly hyperbolic FO-CCZ4 system are:

1. maximum use of the �rst-order ordering constraints (14.1) in order to
split the complete system into 11 pure ODEs (14.39) for the evolution of
the quantities de�ning the 4-metric (α, βi, γ̃ij and φ), and with no spatial
derivatives of these quantities appearing in the remaining PDE system
(14.40). However, if we want to keep this very particular split structure
of the PDE system, it is not possible to add damping terms proportional to
the �rst-order ordering constraints (14.1) to the system, since this would
make spatial derivatives of α, βi, γ̃ij , φ appear again and may eventu-
ally lead to Jordan blocks which cannot be diagonalized. We therefore
explicitly refrain from adding these terms, in contrast to what has been
done in [101]. Following the philosophy above, also writing the system
in a �ux-conservative form like in [11, 89] is not possible, since the �uxes
will in general depend on the 4-metric and thus, a�er application of the
chain rule, spatial derivatives of α, βi, γ̃ij and φ would appear again
in the quasi-linear form. We note that not adding any damping terms
proportional to the �rst-order ordering constraints (14.1) may lead to a
rapid growth of these constraints on the discrete level [303]. �is e�ect,
however, may be reduced by a periodic reinitialization of the auxiliary
variables with appropriate discrete versions of Eq. (14.1), either a�er a
certain number of timesteps, or if a large growth of the �rst-order con-
straint violations is detected.

2. approximate symmetrization of the sparsity pa�ern of the system matrix
A ·n by appropriate use of the second-order ordering constraints (14.2)
and the constraint (14.3), i.e., by adding the terms highlighted in red in
PDEs (14.12-14.22). Symmetrization of the �rst derivatives of the auxil-
iary variables by using (14.36), apart from the advective terms along the
shi� vector.

3. introduction of an independent constraint propagation speed e for the
Hamiltonian constraint H in the PDE (14.16) for the variable Θ, follow-
ing the GLM approach of Dedner et al. [153].

4. use of the logarithms of α and φ as evolution variables, in order to guar-
antee positivity for α and φ in a simple and natural way. �ese evolution
quantities are consistent with the de�nitions of the auxiliary variables
Ak and Pk .

14.3 Eigenstructure of the FO-CCZ4 system

As already shown brie�y above, the FO-CCZ4 system (14.10-14.22) can be
wri�en in compact matrix-vector (quasi-linear form) form

∂Q

∂t
+A1(Q)

∂Q

∂x1
+A2(Q)

∂Q

∂x2
+A3(Q)

∂Q

∂x3
= S(Q), (14.37)

where the complete state vector is given by
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γ̃ij α βi φ Ãij KΘ Γ̂i bi Ak Bi
k Dkij Pk

Pk

Dkij

Bi
k

Ak

bi

Γ̂i

Θ
K

Ãij

φ

βi

α

γ̃ij

Figure 14.2: Sparsity pa�ern of the system
matrix A · n with n = (1, 1, 1)/

√
3 for

randomly perturbed �at Minkowski space-
time using the Gamma-driver shi� condi-
tion (s = 1) and 1 + log slicing (g(α) =

2/α), without the use of the constraints
(14.2) and (14.3) (blue dots) and with the
use of these constraints (blue & red dots).
�e achieved approximate symmetrization
of the sparsity pa�ern is evident. Note also
the complete absence of non-zero entries in
the �rst 11 lines and columns correspond-
ing to the variables γ̃ij , α, βi and φ, which
clearly highlights the special structure of
our FO-CCZ4 system that can be split into
a set of pure ODEs and a reduced PDE sys-
tem, as discussed in Section 14.3. Figure
published in [168].

Q =
(
γ̃ij , lnα, β

i, lnφ, Ãij ,K,Θ, Γ̂
i, bi, Ak, B

i
k, Dkij , Pk

)

=
(
γ̃xx, γ̃xy, γ̃xz, γ̃yy, γ̃yz, γ̃zz, lnα, β

x, βy, βz, lnφ, Ãxx, Ãxy, Ãxz, Ãyy, Ãyz, Ãzz,K,Θ, Γ̂
x, Γ̂y, Γ̂z,

bx, by, bz, Ax, Ay, AxB
x
x , B

x
y , B

x
z , B

y
x, B

y
y , B

y
z , B

z
x, B

z
y , B

z
z , Dxxx, Dxxy, Dxxz, Dxyy, Dxyz, Dxzz,

Dyxx, Dyxy, Dyxz, Dyyy, Dyyz, Dyzz, Dzxx, Dzxy, Dzxz, Dzyy, Dzyz, Dzzz, Px, Py, Pz

)
,

(14.38)

containing a total of 58 variables that have to be evolved in time. Following
the split Q = (V ,U) from equations (14.8) and (14.9), from (14.10-14.22)
and Fig. 14.2 it is obvious that the vectorV is evolved in time only via ODEs
of the type

∂V

∂t
= S′(Q), (14.39)

whereS′(Q) contains the �rst 11 elements of the vector of purely algebraic
source terms S(Q). �erefore, the eigenvalues associated with the ODE
subsystem forV are trivially zero. Since in our formulation of the FO-CCZ4
system we have made maximum use of the �rst-order ordering constraints,
Eqs. (14.10-14.13) do not contain any spatial derivative of the quantities
in V , so that the columns in the matrices of the related eigenvectors are
trivially the unit vectors. �e remaining reduced system that needs to be
analyzed contains the vector U of the dynamic quantities and has the very
particular structure

∂U

∂t
+B1(V )

∂U

∂x1
+B2(V )

∂U

∂x2
+B3(V )

∂U

∂x3
= S′′(Q) , (14.40)

where the source termS′′(Q) contains the remaining elements of the source
vector S(Q) and where the system matricesBi depend only on the vector
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V de�ning the 4-metric and do not depend on the vectorU . �e non-trivial
eigenvectors of the complete system (14.37) can thus be obtained from those
of the reduced system (14.40) by simply adding zeros corresponding to the
quantities contained in V .

An immediate consequence of the very particular spli�ing of (14.37) into
the ODEs (14.39) and the reduced PDEs (14.40) is that all waves appearing
in the system (14.40) and thus in (14.37) are linearly degenerate (see [443] for
a detailed discussion), since the eigenvalues λi depend only on V and not
on U and hence ∂λi/∂Q · ri = 0, ∀λi. �is also means that the FO-CCZ4
system cannot generate shock waves, since the formation of classical shock
waves requires the compression of characteristics and thus the presence of
genuinely nonlinear �elds [385, 443].

In order to prove strong hyperbolicity of the FO-CCZ4 system proposed
in this paper, we compute the entire eigenstructure of the system matrix
B1 in the x1 direction for two standard gauge choices: i) zero shi� βi = 0

(hence s = 0) with harmonic slicing, i.e., g(α) = 1 and ii) the gamma driver
shi� condition (s = 1) with 1+log slicing, i.e. g(α) = 2/α (see section 11.3
for details). Note that, in principle, the eigenstructure of the principal sym-
bol of the system should be computed for every normal direction vector
n 6= 0 in space. However, this is not necessary in this case, since the Ein-
stein equations are isotropic [397].

For the �rst shi� condition, there is no need to evolve the quantities bi

and Bik , whose corresponding PDEs can therefore be neglected in the fol-
lowing analysis (the associated eigenvalues are simply zero and the eigen-
vectors are the unit vectors). For zero shi�, the vector U can thus be fur-
thermore reduced to only 35 remaining dynamic quantities

U = (Ãij ,K,Θ, Γ̂
i, Ak, Dkij , Pk) . (14.41)

In this case the 35 eigenvalues of matrixB1 in the x1 direction are

λ1,2,··· ,21 = 0 , λ22,23 = ±
√
γ̃11φα e ,

λ24,25,··· ,29 = +
√
γ̃11φα , λ30,31,··· ,35 = −

√
γ̃11φα .

(14.42)

�e associated complete set of 35 right eigenvectors de�ning the right eigen-
vector matrixR, as well as the inverse right eigenvector matrix (L = R−1)
that de�nes the le� eigenvectors, are an appendix in our publication [168].

�e fact that the FO-CCZ4 system has only real eigenvalues and a com-
plete set of linearly independent eigenvectors (where the matrix of eigen-
vectors is uniformly bounded) is a necessary and su�cient condition for
strong hyperbolicity. Note that for harmonic lapse the eigenvectors r22,23

are only linearly independent of r24,···35 if c = 1, ∀e > 0 or for e 6= 1, ∀c ≥
0. �e choice c = 1 and e = 1 corresponds to the standard se�ing typically
used for second order Z4 and CCZ4 systems, and the importance of using
c = 1 has already been shown in the hyperbolicity analysis for the �rst and
second order Z4 system carried out in [86, 90]. In other words our results
on the FO-CCZ4 system con�rm previous �ndings made in the literature.

For the gamma driver shi� condition, the hyperbolicity analysis is much
more complex and requires the computation of all 47 eigenvectors of the
reduced dynamical system (14.40), this time including also the quantities
bi and Bik . A�er tedious calculations it was possible to obtain analytical
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expressions for the eigenvalues and all 47 eigenvectors also in this case
(again, the results are reported in the appendix of [168]). To the best of our
knowledge, this is the �rst time that a hyperbolicity analysis of a �rst-order
reduction of the CCZ4 system including the gamma driver shi� condition
has been carried out. An analysis of the FO-CCZ4 system with other shi�
conditions, such as the generalized harmonic shi� [87, 90], is le� to future
work.

At this point, we would like to add the following clarifying remark. �e
hyperbolicity analysis has been carried out for the FO-CCZ4 evolution sys-
tem (14.10-14.22), which in principle admits violations of the algebraic con-
straints det(γ̃ij) = 1, γ̃ijÃij = 0 and γ̃ijDkij = 0. Hence, compared
to the original Z4 system [11, 85, 86], it has an augmented solution space.
Since our hyperbolicity analysis has been made without enforcing the al-
gebraic constraints, it is valid for the FO-CCZ4 system with the augmented
solution space, but should not be regarded as an analysis of the original
Z4 system. However, if the initial data satis�es the algebraic constraints, a
direct consequence of the system (14.10-14.22) is that the constraints will
remain satis�ed for all times, so that our hyperbolicity analysis also covers
solutions that satisfy the algebraic constraints.

15 Implementation of the FO-CCZ4 equations

�e implementation of the pure PDE terms (�uxes, non-conservative prod-
ucts and sources) of the FO-CCZ4 equations is logicless since they are given
analytically 30 . �erefore, implementing the huge PDE system is basically 30 in constrast for instance to the GRMHD

equations where an iterative root-�nding
has to be applied to recover primitive vari-
ables from the conserved ones. Logic enters
here in terms of an iterative loop with stop
criterion.

a question of care and diligence and can be done in principle in any com-
puter readable language.

15.1 About the cost of the FO-CCZ4 PDE system

�e costs of a PDE system should measure its requirements in runtime,
memory and storage when being evaluated in a computer. Certainly, in
terms of memory requirements, due to the larger state vector, the costs of
the FO-CCZ4 system (59 unknowns) are certainly higher then of the SO-
CCZ4 system (34 unknowns), which again is much more demanding then
the original ADM system (12 unknowns). When evaluated within the pre-
sented ADER-DG scheme, the cost of the FO system will again be higher
than the cost of the SO system. �is is due to the distinction between non-
conservative product (NCP) and source terms is made and the evaluation of
the NCP takes place several times within a timestep during the evaluation
of the Riemann solver at the cell boundaries. However, the FO system can
also be evaluated with traditional methods—Finite Di�erences and Runge
Ku�a (FDRK) where there is only the right hand side di�erential operator.

�e determination of absolute costs is almost always inconclusive. For
instance, the system matrix, being a Rn×n matrix, obviously grows with
O(n2), where n is the state vector size. A naive a�emp is to relate the cost
ratio of FO/SO system to 582/342 ∼ 2.9. However, this obviously does not
even take the evaluation of tensors into account. Figure 14.2 already shows
that the FO-CCZ4 system matrix is sparse, and Figure 15.1 quanti�es the dif-
ferences in terms of neccessary contractions to determine a certain element
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Figure 15.1: System matrix A · n with in
radial direction n = (1, 1, 1) as in Fig-
ure 14.2. Here, the color (shading) en-
codes the number of basic operations (addi-
tions and multiplications due to tensor con-
tractions) neccessary to compute the non-
conservative product of that matrix ele-
ment on a logarithmic scale. �e major
blocks are labeled.
�e �gure shows the two major cost
drivers: �e complex computation of the
Riemann (Ricci) tensor via the derivatives
of the Christo�el symbols via Dkij (upper
right) as well as the symmetrization contri-
butions which almost double the computa-
tional cost of the NCP.

Aij . �e amount of calculations varies over �ve orders of magnitude. In
other words, a few elements contribute to the overall number of ∼ 40, 200

elementary arithmetic operations (counting special functions like nx and
xn as one operation).

Conf. C #OP t [sec]

Dense G 8884 3.49
I 17761 8.92

Sparse G 5638 2.61
I 2757 6.14

FullSimplify G 4737 2.26
I 2730 4.42

Optimized G 5886 2.52
I 2821 5.77

orderOpt G 4141 2.76
I 1480 3.47

Table 15.1: Measuring the impact of di�er-
ently “optimized” generated code to com-
pute the NCP of the Z4 system. �e �rst col-
umn describes the experiment, the second
column shows which compiler was used
to compile the Fortran code to assembler
(G=GNU compiler, I=Intel compiler), #OP
indicates the number of assembler instruc-
tions which were generated while t shows
the serial runtime for 6 · 106 evaluations of
the NCP with arbitrary but same state vec-
tors (pseudo-randomly generated with the
same seed).
Experiments and interpretation are given in
the main text.

A completely di�erent measure is the number of assembler instructions
which have to be processed in order to compute a PDE function. Table 15.1
provides a small benchmark where di�erent Fortran codes were generated
by a CAS (Mathematica and Matlab were used). In the �rst setup, all ma-
trix elements were speci�ed, even the zero ones (Dense), while in a second
step, the zero matrix elements were trivially removed (Sparse). In a subse-
quent step, a typical CAS “simpli�cation” step (FullSimplify) was performed,
where algebraic expressions are brought in a form which requires less eval-
uations (for instance by reducing polynomial expressions). �e Optimized
step further tried to store intermediate expressions to variables, avoiding
the need of computing certain expressions over and over (trading memory
for less arithmetic instructions). �e orderedOpt step adopts a topological
ordering of the required intermediate computations of the NCP (adopting a
task based paradigm), which should also reduce cache misses.

�e results of this benchmarks are given as follows: While the number of
operations in principle can be decreased by one order of magnitude (17kOP
for the dense matrix vs. 1.4kOP for the topological ordered and intermedi-
ate expressions computing version), the overall runtime stays in the same
regime and sophisticated algebraic transformations of the computation or-
der do not pay o�.

�e reasons for this are that optimizing for a small number of assembler
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instructions is not the right measure at a CISC platform 31 , while sophisti- 31 Complex instruction set computers
(CISC) have machine instructions for
various high level functions, which
however can vary largely in execution
time. In contrast, the presented measure is
considerably more meaningful for reduced
instruction set computers (RISC). In the
current HPC landscape, CISC machines
dominate, while there is however a trend
for more RISC machines.

cated vectorization units of the machine were not used at all 32 . �erefore,

32 �e lack of vectorization in CAS-
generated code stems from the fact that the
tensorial algebra was not expound to the
CAS in the chosen approach. While ten-
sorial packages for CAS are in principle
available (cf. Section 3.1 on page 21), the
freely available C/Fortran code generators
from both Mathematica™ and Matlab™ do
not generate optimized tensor contraction
loops, such as discused in Section 15.2.

a static analysis of code runtime is not meaningful.

15.2 Choosing the right language

�ere are several aspects that emerge when implementing large tensorial
PDE systems. First, as in physics, where the suitable choice of a coordinate
system can greatly reduce the complexity of a problem, or in mathematics,
where the transformation of a problem to another theory can provide new
insights and shortcuts, a suitable notation of the PDE system in a computer-
readable language/form reduces the abstraction neccessary from physics
and the equations as they are wri�en on the paper.

�e smallest common demoninator in modern scienti�c programming
languages is that of linear algebra, providing a compact language to ma-
nipulate n-dimensional arrays in one expression (instead of looping over
vector or matrix axes). However, linear algebra misses a number of features
from di�erential geometry, for instance the distinction from covariant and
contravariant tensors. �ere is in fact the need for a domain speci�c lan-
guage (DSL) which implements a minimum on tensor algebra, i.e., general
style contractions (applying Einstein sum convention).

As an example, an exemplaric contraction which shall compute Di is
given,

Di := AikBnmCknm (15.1)

with arbitary tensors A,B,C , where not even symmetries such as Bnm =

Bmn shall be relevant at this point. While the mathematical expression
(15.1) provides a clear instruction how Di is de�ned by sums, thanks to
associativity of addition and multiplication, several evaluation strategies
may lead to Di. For the FO-CCZ4 equations, using the TensorTemplates

package allows to write down this expression precisely as

~D = contract〈1,0〉
(
A, trace〈0,2〉

(
contract〈0,2〉(B,C)

))
(15.2)

�is notation is declarative in a sense that it does not expose how a con-
traction or trace is computed internally 33 and it reveals the intermediate 33 �e technical advantage (which comes

on top of readability) of this abstraction is
the fact that the implementation of the op-
eration can be done e�ciently by the com-
piler, for instance by exploting paralleliza-
tion in terms of SIMD-vectorization.

evaluation sequence as

AikBnmCknm → AikEmkn → AikEk → Di . (15.3)

Providing e�cient tensor algebra as a library is a whole branch of HPC
itself, and there is a plentitude of librarys available, however only a subset
of them deals with covariance 34 . 34 other covariance-aware tensor libraries

are for instance the Deal.II Library [15,
54], the Tensor Contraction Engine [66,
67, 293], BARRACUDA [337], InTensLi [302]16 Benchmarks for solving FO-CCZ4 with ADER-DG

In the following we present a ba�ery of standard tests that explore the abil-
ity of our formulation to carry out long-term stable evolutions of a number
of di�erent spacetimes with increasing degree of curvature. If not stated
otherwise, in all of the tests we set initially Θ = 0, Γ̂i = Γ̃i and bi = 0 and
the HLLEM method is used (Section 6.2).
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In all tests the algebraic constraints on the unit determinant of γ̃ij , the
zero trace of Ãij as well as the constraint γ̃ijDkij = 0 (which is a con-
sequence of |γ̃ij | = 1) have all been rigorously enforced in the discrete
solution uh(x, tn) at the beginning of each timestep, but they have not
been enforced during the computation of the spacetime predictor qh. Note
that the predictor qh is only an auxiliary quantity that is overwri�en af-
ter each timestep and which has a role similar to the evolution stage to the
half timelevel in second-order MUSCL-Hancock type TVD �nite-volume
schemes. We therefore set τ → ∞ and thus neglect the corresponding
source terms. In tests involving black holes, the lower limit on the lapse is
set to be ln(α) ≥ −20. We will use the notation PN to indicate an ADER-
DG scheme using piecewise polynomials of degree N to represent uh.

16.1 Linearized gravitational-wave test
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Figure 16.1: Linearized gravitational-wave
test using an ADER-DG P5 scheme with 4
elements (panels 1-2) and an ADER-DG P9

scheme with only 2 elements (panels 3-4).
�e temporal evolution of the constraints
(colour panels) is shown together with the
waveform for the component Ã22 of the
traceless conformal extrinsic curvature af-
ter 1000 crossing times at time t = 1000.

�e �rst test problem is a simple one-dimensional wave-propagation test
problem in the linearized regime. �e computational setup follows the one
suggested by in [8]. �e computational domain is Ω = [−0.5, 0.5] with
periodic boundary conditions in the x direction and two simulations are
run until a �nal time of t = 1000: (i) a �rst one using 4 ADER-DG P5

elements (i.e., a total number of 24 degrees of freedom) and (ii) a second
one using only 2 ADER-DG P9 elements (i.e., only 20 degrees of freedom).
�is test is run with the unlimited version of the ADER-DG scheme. �e
exact solution of the metric of the problem is given by

ds2 = −dt2 + dx2 + (1 + h)dy2 + (1− h)dz2 , (16.1)
with h := ε sin (2π(x− t)) , (16.2)

and the wave amplitude ε = 10−8 is chosen small enough in order to stay
in the linear regime, so that terms O(ε2) can be neglected. Since the shi�
is zero in the metric (16.1) (βi = 0), we set s = 0 in our FO-CCZ4 sys-
tem and furthermore harmonic slicing is used, i.e., g(α) = 1. We also set
K0 = 0, c = 0, e = 2 and use the undamped version of the system, set-
ting κ1 = κ2 = κ3 = η = 0. Using the metric (16.1), the de�nition of the
extrinsic curvature reduces toKij = − 1

2∂tγij/(α), so that the various com-
ponents are given by Kxx = Kxy = Kxz = Kyz = 0, Kyy = − 1

2∂th and
Kzz = + 1

2∂th. From this information, the conformal factor φ, the confor-
mal spatial metric γ̃ij , the traceless conformal extrinsic curvature Ãij and
all auxiliary variables can be computed by a direct calculation according to
their de�nitions.

In Fig. 16.1 we report the temporal evolution of all ADM constraints
(Hamiltonian and momentum constraints) as well as the errors of the al-
gebraic constraints on the determinant of the conformal metric and the er-
ror in the trace of Ãij in both cases, i.e., using the ADER-DG P5 and P9

scheme. A comparison of the extrinsic-curvature component Ã22 with the
exact solution is also provided at the �nal time t = 1000, showing overall
an excellent agreement between numerical and exact solution. �e qual-
ity of the results obtained with the ADER-DG schemes used in this paper,
which are uniformly high-order accurate in both space and time, is signi�-
cantly superior to the results shown in [8] for the same test problem using a
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�nite di�erence scheme with much more grid points (between 50 and 200)
compared to the very coarse mesh containing only 20 to 24 degrees of free-
dom used in our simulations. Note that a fair comparison between high
order �nite-di�erence and DG schemes must be made in terms of points
per wavelength for �nite-di�erence methods and in degrees of freedom per
wavelength for DG schemes.

16.2 Gauge-wave test
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Figure 16.2: Gauge-wave test case with am-
plitude A = 0.1 using the undamped FO-
CCZ4 system (κ1 = κ2 = κ3 = 0) and
improved cleaning speed e = 2 with no
damping c = 0. Comparison with exact
solution a�er t = 1000.
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Figure 16.3: Highly nonlinear gauge-wave
test case with very large amplitude A =
0.9. Comparison of the wave form with the
exact solution at time t = 10 for an ADER-
DG P5 scheme and 100× 10 elements.

Also this classical test problem has been taken from the collection of stan-
dard tests of [8]. �e metric in this case is given by

ds2 = −H(x, t)dt2 +H(x, t)dx2 + dy2 + dz2 ,

with H(x, t) := 1−A sin (2π(x− t)) .
(16.3)

�e metric (16.3) implies zero shi� (βi = 0), hence we use once more
s = 0 together with harmonic slicing g(α) = 1. Also for this test we
employ the undamped version of the FO-CCZ4 system, se�ing κ1 = κ2 =

κ3 = η = 0. �e computational domain in this case is two-dimensional,
with Ω = [−0.5, 0.5] × [−0.05, 0.05] with periodic boundary conditions
in all directions. Since βi = 0, the extrinsic curvature is again given by
Kij = −∂tγij/(2α), i.e., Kyy = Kzz = Kxy = Kxz = Kyz = 0 and the
remaining primary variables are

φ2 = H−1/3, α =
√
H, Kxx = −πA cos (2π(x− t))√

1−A sin (2π(x− t))
.

We furthermore set K0 = 0. �e auxiliary variables can be obtained from
their de�nition via a straightforward calculation.

We �rst simulate this test problem with a perturbation amplitude of
A = 0.1 until t = 1000 with an unlimited ADER-DG P3 scheme and using
100×10 elements to cover the domain Ω. We run this physical setup twice,
once with the default parameters e = c = 1, according to the original sec-
ond order CCZ4 system [12] and a modi�ed se�ing with e = 2 and c = 0 to
obtain an improved cleaning of the Hamiltonian constraint. In both cases
the system is strongly hyperbolic. �e time evolution of the ADM con-
straints is reported in Fig. 16.2, showing only a very moderate growth of
the constraint M2 that is sublinear in time and close to machine precision.
�e other constraintsH andM1 remain essentially constant during the en-
tire simulation. We emphasize that we have used the undamped version
of the FO-CCZ4 system, and nevertheless obtain stable results, while the
original second-order CCZ4 formulation was reported to fail for this test
problem in the undamped version, and only the damped CCZ4 system was
stable (see [12] for details). It is also worth recalling that both the �rst- and
the second-order formulation of the BSSNOK system fail for this test case
a�er a rather short time [12, 101]. In Fig. 16.2 we also provide a direct com-
parison of the solution a�er 1000 crossing times for the conformal factor φ
as well as for the trace of the extrinsic curvature K . Note the overall very
good agreement between the numerical solution and the exact one. For the
sake of clarity, in the plots of the waveforms we also report the numerical
error computed as the di�erence between the numerical solution and the
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Nx ×Ny L2 error φ O(φ) L2 error α O(α) L2 error K O(K)

N = 3

60× 6 2.8663E-05 5.4876E-05 3.8469E-03
80× 8 1.0574E-05 3.5 2.2314E-05 3.1 7.0357E-04 5.9

100× 10 3.8760E-06 4.5 8.0170E-06 4.6 2.3112E-04 5.0
120× 12 1.6311E-06 4.7 3.2521E-06 4.9 9.7392E-05 4.7

N = 4

60× 6 4.2966E-06 1.1408E-05 2.1910E-04
80× 8 8.9473E-07 5.5 2.3725E-06 5.5 5.0194E-05 5.1

100× 10 2.5596E-07 5.6 6.8053E-07 5.6 1.5781E-05 5.2
120× 12 9.0039E-08 5.7 2.4064E-07 5.7 6.1004E-06 5.2

N = 5

40× 4 8.9305E-07 2.1971E-06 1.3614E-04
60× 6 5.2103E-08 7.0 1.2756E-07 7.0 5.9568E-06 7.7
80× 8 7.1947E-09 6.9 1.7348E-08 6.9 8.4259E-07 6.8

100× 10 1.5357E-09 6.9 3.6421E-09 7.0 1.8093E-07 6.9
N = 7

30× 3 1.7693E-08 3.9004E-08 6.3103E-06
40× 4 1.8387E-09 7.9 4.1751E-09 7.8 5.5791E-07 8.4
60× 6 6.2824E-11 8.3 1.4304E-10 8.3 2.1519E-08 8.0
80× 8 5.6521E-12 8.4 1.3455E-11 8.2 1.7085E-09 8.8

Table 16.1: Numerical convergence results
for the large amplitude gauge wave test
problem with A = 0.9 at a �nal time of
t = 10. �e L2 errors and corresponding
observed convergence order are reported
for the variables φ, α and K . Here, O(x)
means the convergence order for x.

exact solution at the �nal time t = 1000. It can be clearly noticed from
the computational results shown in Fig. 16.2 that the constraints and the
phase errors in the waveforms are signi�cantly smaller for the modi�ed
se�ing e = 2, which may justify the use of a faster cleaning speed of the
Hamiltonian constraint e > 1 for purely numerical purposes. In any case,
our FO-CCZ4 system behaves well also with the default se�ing e = c = 1,
which is typically used in the standard second order CCZ4 system [12].

Since the gauge-wave test has a smooth nontrivial exact analytical so-
lution and is also valid in the nonlinear regime of the equations, we can
use it in order to perform a numerical convergence study. For this purpose,
we run the test again with di�erent unlimited ADER-DG PN schemes on
a sequence of successively re�ned meshes. To make the test more di�cult,
we choose a very large perturbation amplitude of A = 0.9, which takes the
system in the highly nonlinear regime, although in the end the test consists
only in a nonlinear re-parametrization of the �at Minkowski spacetime. For
thise case we use c = 0 and e = 2. We set the �nal simulation time to t = 10

and continue using the undamped version of the FO-CCZ4 system.

Figure 16.4: Growing of constraint viola-
tions during the Gauge Wave evolution.
Note the logarithmic scale.

�e L2 error norms of the conformal factor φ, the lapse α and the trace
of the extrinsic curvature K , together with the observed order of accuracy
of the di�erent ADER-DG schemes are reported in Table 16.1. We observe
essentially the expected order of accuracy of the scheme for N = 3 and
N = 4, while a superconvergence is observed for N = 5 and N = 7. We
think that this is due to the strong nonlinearities of the PDE system appear-
ing in the regime in which we run this test case withA = 0.9 and that some
leading errors may be dominated by quadratic terms in the metric and the
conformal factor, which can lead to a faster error decay thanN+1 for coarse
meshes. However, we expect that this superconvergence will disappear on
su�ciently re�ned meshes; but since the absolute errors are already ge�ing
close to machine accuracy on the meshes used here, it is not possible to re-
�ne the mesh much more with double-precision arithmetics, at least in the
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N = 7 case. For the ADER-DG P5 scheme using 100× 10 elements a com-
parison between numerical and exact solution of the nonlinear waveforms
for φ, α, K and Dxxx is provided in Fig. 16.3 at t = 10, where we can note
again an excellent agreement between exact and numerical solution.

16.3 Robust stability test

Figure 16.5: Robust stability test case with
Gamma-driver shi� condition and 1 + log
slicing with random initial perturbation of
amplitude 10−7/ρ2 in all quantities on a
sequence of successively re�ned meshes on
the unit square in 2D using an ADER-DG
P3 scheme. Upper: 10× 10 elements, cor-
responding to 40 × 40 degrees of freedom
(ρ = 1). Lower: 80 × 80 elements, corre-
sponding to 320× 320 degrees of freedom
(ρ = 8).

�e robust stability test is the last standard test problem that we take from
Ref. [8]. While in the previous test problems we have used a simple frozen
shi� condition ∂tβ

i = 0 by se�ing s = 0 in the FO-CCZ4 system, here
we employ the classical Gamma-driver shi� condition. Furthermore, we
employ the 1 + log slicing condition, se�ing the slicing function to g(α) =

2/α and the parameter f of the Gamma driver to f = 0.75, which is also
the typical value used for the BSSNOK system and for the classical second-
order CCZ4 system [12]. We further set e = 2, κ1 = κ2 = κ3 = 0, K0 = 0,
c = 1 and η = 0.

As customary in this test, we start from the �at Minkowski metric. We
then add uniformly distributed random perturbations to all quantities of the
FO-CCZ4 system, i.e., to all primary and auxiliary variables and also to Θ

and Γ̂i. �e two-dimensional computational domain is Ω = [−0.5, 0.5]2

and we run di�erent simulations with an unlimited ADER-DG P3 scheme
on four successively re�ned meshes composed of 10ρ× 10ρ elements, cor-
responding to 40ρ × 40ρ degrees of freedom, where ρ ∈ {1, 2, 4, 8} is the
re�nement factor. �e perturbation amplitude is ε = 10−7/ρ2, which corre-
sponds to perturbation amplitudes that are three orders of magnitude larger
that those suggested in [8].

�e time evolution of the ADM constraints is reported in Fig. 16.5 for all
four simulations. One can observe that a�er an initial decay the constraints
remain essentially constant in time for all di�erent grid resolutions, indicat-
ing that our FO-CCZ4 system indeed passes the robust stability test with the
standard Gamma driver and 1 + log gauge conditions (see [118] for similar
tests with the Z4c system).

16.4 Convergence tests on three-dimensional black-hole spacetimes

In this test we consider the evolution of isolated Schwarzschild and Kerr
black holes in 3D Cartesian Kerr-Schild coordinates, with M = 1 the mass
of the black hole and a the dimensionless spin. �e metric in these coordi-
nates is known analytically and thus the primary variables of our evolution
system are given by

α = S−
1
2 , βi =

2H

S
li , γij =




1 + 2Hl2x 2Hlxly 2Hlxlz

2Hlxly 1 + 2Hl2y 2Hlylz

2Hlxlz 2Hlylz 1 + 2Hl2z


 ,

(16.4)
with

H := M
r3

r4 + a2z2
, S := 1+2H , lx :=

rx+ ay

r2 + a2
, ly :=

ry − ax
r2 + a2

, lz :=
z

r
,

and

r :=

√
(x2 + y2 + z2 − a2)/2 +

√
((x2 + y2 + z2 − a2)/2)2 + z2a2 .
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We furthermore use the fact that the solution is stationary, i.e., ∂tγij = 0,
hence the extrinsic curvature Kij is computed as follows [385]

Kij =
1

2α
(∇iβj +∇jβi) . (16.5)

�e function K0 is chosen as K0 =
(
K − βk∂kα

)
/
(
α2g(α)

)
, so that

∂tα = 0 and in this test the Gamma-driver shi� condition is simpli�ed to
∂tβ

i = fbi, ∂tBik = f∂kb
i and ∂tbi = ∂tΓ̂

i, with the consequence that the
above exact solution corresponds to a stationary solution of the FO-CCZ4
system. In other words, we remove the advection terms from the evolution
equations of the shi� βi and the variable bi (see also [7]). �e conformal
factor φ and the auxiliary variables can be computed according to their def-
inition. �e computational domain is chosen as Ω = [1, 5]3M3, and the
exact solution given by the initial condition is imposed on all boundaries
in all variables at all times. Note that this choice of boundary conditions is
appropriate to study convergence since the exact solution is also a station-
ary solution of our PDE system. Note also that the black hole is centered
at x = y = z = 0, so that we evolve only a section of the domain o�-
set from the singularity, but encompassing regions both inside and outside
of the event horizon; this e�ectively amounts to employing an excision of
the black-hole interior. We furthermore set e = 2, c = 1, η = 0, and
consider the undamped CCZ4 system with the 1 + log slicing, i.e., we set
κ1 = κ2 = κ3 = 0, f = 0.75 and g(α) = 2/α.

�e simulations were performed with di�erent ADER-DG schemes on
a sequence of successively re�ned meshes until a �nal time of t = 10M .
�e Rusanov method is used as approximate Riemann solver at the element
interfaces. In the case of the Schwarzschild black hole we use a = 0, while
for the Kerr black hole we set a = 0.9. �e corresponding numerical con-
vergence rates are reported for both cases in Table 16.2, where we observe
that the designed order of accuracy N + 1 of our high-order fully-discrete
one-step ADER-DG schemes has been properly reached.

16.5 Evolution of a single puncture black hole

We next have applied the FO-CCZ4 formulation to a single puncture black
hole [97] with mass M = 1 and dimensionless spin a = 0 located at the
origin of a three-dimensional computational domain Ω = [−150, 150]3M3

with periodic boundary conditions on all boundaries. �e domain is dis-
cretized with an AMR mesh with grid spacing ∆x = ∆y = ∆z = 2.5M

within the inner box Ωb = [−15, 15]3M3, while ∆x = ∆y = ∆z =

7.5M is used in the outer part of the domain. In the innermost zone Ωl =

Table 16.2: Numerical convergence results
of FO-CCZ4 with simpli�ed Gamma driver
for the Schwarzschild black hole (le�) and
the Kerr black hole (right) in 3D Cartesian
Kerr-Schild coordinates at a �nal time of
t = 10. �e L2 errors and corresponding
observed convergence order are reported
for the variables φ.

Schwarzschild black hole (a = 0) Kerr black hole (a = 0.9)
Nx L2 error φ O(φ) Nx L2 error φ O(φ) Nx L2 error φ O(φ) Nx L2 error φ O(φ)

N = 3 N = 5 N = 3 N = 5

10 9.9982E-06 5 2.1837E-06 10 1.4270E-05 5 2.6679E-06
15 1.8439E-06 4.2 10 2.8327E-08 6.3 15 2.8279E-06 4.0 10 6.5136E-08 5.4
20 5.8521E-07 4.0 15 2.3649E-09 6.1 20 8.9487E-07 4.0 15 6.0944E-09 5.8
25 2.4322E-07 3.9 20 4.1176E-10 6.1 25 3.6468E-07 4.0 20 1.1087E-09 5.9
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[−3, 3]3M3 the third-order subcell ADER-WENO �nite-volume limiter is
activated throughout the entire simulation. For details on the AMR frame-
work and the subcell �nite-volume limiter we refer the interested reader
again to [170, 469, 470]. We also stress that this simulation can be run only
a�er activating the �nite-volume subcell limiter, since a robust scheme is
needed in order to deal with the puncture singularity. Without such a lim-
iter, i.e., with a pure DG scheme, the code crashes a�er a few timesteps
since the high-order unlimited DG scheme is not robust enough to deal
with the puncture metric. In our simulation we use an ADER-DGP3 scheme
(N = 3), which leads to 2N+1 = 7 �nite-volume subcells per DG element,
i.e., the e�ective mesh spacing in terms of points (cell averages) inside the
domain Ωl is ∆x = ∆y = ∆z = 0.357M . Note that we set up the mesh
so that the puncture is located at the boundary of the DG elements; given
the location of the degrees of freedom in the subcell grid, no grid point
coincides with the puncture. We set the CCZ4 parameters to κ1 = 0.1,
κ2 = 0, κ3 = 0.5 and η = 0. �e constant µ accounting for the second-
order ordering constraints in the evolution of Bik is set to µ = 1/5, while
for this test we use c = 1, f = 0.75 and e = 1 to be as close as possible
to a standard second-order CCZ4 formulation, where the cleaning of the
Hamiltonian constraint is done at the speed of light.
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Figure 16.6: Time evolution of the ADM
constraints for the single puncture black
hole using an ADER-DG P3 scheme with
AMR and ADER-WENO subcell �nite-
volume limiter until t = 1000 (le�). Color
contours for the lapse at t = 200 and
grid setup showing the domain Ω, the re-
�ned box Ωb and the zone with active sub-
cell �nite-volume limiter Ωl (center). Zoom
into the center region at t = 200 with color
contours for α (right).

�e initial metric and lapse are provided by the TwoPunctures initial
data code [30] (part of the Einstein Toolkit [306]). Explicitly, the lapse
is set initially to

α =
1

2

(
1− 1

2 (M/r∗)

1 + 1
2 (M/r∗)

+ 1

)
, (16.6)

where r∗ := (r4 + 10−24)
1
4 and r is the coordinate distance of a grid point

from the puncture. �e auxiliary quantities (which are spatial derivatives of
the primary quantities) are obtained via a simple fourth order central �nite
di�erence applied to the primary variables α and γij . Initially the shi� and
the extrinsic curvature are set to zero, i.e., βi = 0 and Kij = 0.

�e evolution was carried out until a �nal time of t = 1000M and Fig.
16.6 reports the evolution of the average L2 error of the ADM constraints,
which we de�ne as

L2 =

√∫
Ω
ε2dx∫

Ω
dx

,

where ε denotes the local error of each of the ADM quantities, i.e., Hamil-
tonian H and momentum constraints Mi. In Fig. 16.6 also a view of the
3D grid setup is shown together with a zoom into the center region with
the contour colors of the lapse function at a time of t = 200M . It is prob-
ably worth recalling that, to the best of our knowledge, these are the �rst
results obtained for a puncture black-hole spacetime using a fully three-
dimensional DG �nite-element method with AMR and LTS. Previous re-
sults obtained with high-order DG schemes for black-hole spacetimes were
essentially limited to the one-dimensional case [101, 200, 327].
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16.6 Preliminary results for moving punctures

Figure 16.7: Time evolution of the contour
surfaces of the lapse α and the shi� vector
βi for the head-on collision of two puncture
black holes of equal mass M = 1 at times
t = 0, 5, 7, 8, 10M and t = 15M , from
top le� to bo�om right.

�e last test considered is a preliminary application of the FO-CCZ4 system
to a binary system of two moving punctures. In particular, we consider
a head-on collision of two nonrotating black holes of equal mass M =

1 with zero linear momentum initially located at x− = (−1, 0, 0) and
x+ = (+1, 0, 0). �e three-dimensional computational domain is given by
Ω = [−25, 25]3M3 and �at Minkowski spacetime is imposed as boundary
condition everywhere. �e CCZ4 parameters are set to κ1 = 0.1, κ2 = 0,
κ3 = 0.5, η = 0 and furthermore we choose c = 1, e = 1, f = 1

and µ = 1/5. Again, the initial metric and the lapse are provided by the
TwoPunctures initial data code [30], with the lapse set initially to

α =
1

2

(
1− 1

2

(
m−/r

∗
−
)
− 1

2

(
m+/r

∗
+

)

1 + 1
2

(
m−/r∗−

)
+ 1

2

(
m+/r∗+

) + 1

)
, (16.7)

where r∗− and r∗+ are the coordinate distances of a grid point from either
puncture (de�ned analogously to the previous section) and m− and m+

are the bare masses of the two black holes (see [30]) and in this case they
are equal. �e auxiliary quantities are computed from the primary vari-
ables via a fourth-order central �nite-di�erence method. We use the simple
and robust Rusanov method as approximate Riemann solver on the element
boundaries. �e shi� and extrinsic curvature are initially set to βi = 0 and
Kij = 0.

�e domain is discretized with an AMR mesh of mesh spacing ∆x =

∆y = ∆z = 5/12M within the inner box Ωb = [−2.5, 2.5]3M3, while
∆x = ∆y = ∆z = 1.25M is used in the outer part of the domain. In
the innermost zone Ωl = [−5/3, 5/3]3M3 the third-order subcell ADER-
WENO �nite-volume limiter is activated throughout the entire simulation.
As for a single puncture, we use an ADER-DG P3 scheme (N = 3), whose
2N + 1 = 7 �nite-volume subcells lead to an e�ective mesh spacing inside
the domain Ωl of ∆x = ∆y = ∆z = 0.0595. Once again we remark that
the use of the �nite-volume subcell limiter is essential in order to obtain a
stable evolution.

�e simulation is run until a �nal time of t = 60M and the evolution
of the contour surfaces of the lapse and the shi� vector are reported in Fig.
16.7. �e contour surfaces of the conformal factor at the �nal time as well
as the evolution of the ADM constraints are depicted in Fig. 17.1. Clearly,
no sign of growth in the violation of the constraints appears a�er the two
punctures have merged at t ' 10M .

Although these results are meant mostly as a proof-of-concept rather
than as a realistic modelling of the inspiral and merger on binary black-hole
systems, they provide convincing evidence that binary systems of punc-
ture black holes can be evolved stably with our path-conservative ADER-
DG scheme with ADER-WENO subcell �nite-volume limiter on AMR grids
based on the FO-CCZ4 formulation proposed here. A more detailed and sys-
tematic investigation, which includes the emission of gravitational waves
from binary systems of rotating black holes in quasi-circular orbits [12], will
be the subject of future work.
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17 Summary
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Figure 17.1: Head-on collision of two punc-
ture black holes: contour surfaces of the
conformal factor φ at time t = 34M af-
ter the merger (le�) and time evolution of
the ADM constraints (right). �e curves for
the second and third momentum constraint
almost coincide.

In Chapter II, the evolution from classical 3+1 formulation of Einsteins �eld
equations over BSSNOK and the Z4 family to CCZ4 was passed. �e rewrit-
ing of CCZ4 to a �rst order formulation was discussed in detail and remarks
on mathematical and computer-science (implementation) related points were
made. A�erwards, the ADER-DG scheme from Section 6 was applied in
order to demonstrate the correctness of the PDE and applicability of the
scheme in a couple of standard numerical relativity testbeds. Some of these
tests are especially remarkable, since these are the �rst simulations of black-
hole spacetimes ever performed in three spatial dimensions with high-order
discontinous galerkin methods. However, all examples shown in this sec-
tions were restricted to “vacuum solutions” of Einsteins equations, where
the ma�er contribution Tµν is exactly zero. Chapter III on the next page is
dedicated to discuss the powerful and widespread theory of hydrodynamics
for a non-zero assignment of Tµν in the given equations, while providing
its standalone evolution equations for individual quantities resembling the
energy momentum tensor.
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Hydrodynamics

chapter

IIIADER-DG schemes for the general-relativistic
magnetohydrodynamic equations

�is chapter summarizes e�orts of solving the equations of general rela-
tivistic magnetohydrodynamics (GRMHD) with the �nite-volume limited
ADER-DG scheme introduced in Chapter I on page 17. An introduction
into the problem and a review of previous work given in Section 0.3 on
page 14. �is chapter is prepended a motivation abou the physical model-
ing of neutron stars spacetimes. �e subsequent Chapter IV on page 95 will
demonstrate an actual application (beyond academic benchmark scenarios).
�is chapter relies partially on the publications [194, 273].

18 Motivation: An effective theory for dense and hot nuclear matter

�e most compact astrophysical object a�er a black hole is a neutron star.
Having roughly the mass of the sun, the star radius is only at the kilometer
scale, thus only an order of magnitude larger then its Schwarzschild radius.
1 . Astrophysically, these objects are interesting as the endpoint of a super- 1 To provide some numbers, the solar

mass M� ≈ 2 × 1030 kg complies with
its Schwarzschild radius R� ≈ 3 km. n
contrast, typical neutron stars with M ≈
2M� have a radius at the order of R ≈
10 km.

novae. Pulsars, being neutron stars (or white dwarfs) emi�ing characteristic
highly intensive beams of electromagnetic radiation, are amongst the most
fascinating and best studied compact objects in astronomy.

For an high energy physicist, neutron stars are interesting because they
allow to probe all fundamental forces: Of course gravity, electromagnetism,
but also the weak and strong force. In neutron stars, energy and density
regimes can be reached which are out of range for particle accelerators. An
understanding of neutron star interiours thus allows to falsify or set limits
in nuclear and fundamental theories. As an example, within the merger of
a binary neutron star system, it is likely that the quark phase transition can
be probed.

In order to describe the physics of a neutron star, the best fundamental
theories available are the standard model of particle physics, wri�en in the
language of special-relativistic quantum �eld theory, and general relativity,
the (non-quantum) theory of gravity 2 . 2 In fact, a neutron star does not even

come close to take backreactions of quan-
tum ma�er onto the spacetime into ac-
count, and therefore quantum corrections
are not required in Einstein �eld equations
(in contrast as in section 35).

�e typical approach to solve the spacetime of a single isolated neutron
star requires taking in an averaged, thermalized energy-momentum tensor
at a given spatial position. �is motivates to �nd a suitable e�ective theory
(or phenomenological model) for the ma�er dynamics which is thermody-
namically motivated, leaving the (fundamental) particle physics picture be-
hind 3 . �e physical branch of �uid mechanics provides a suitable theory, 3 Section 25.3 on page 93 will go into detail

of an ideal �uid model of a neutron star, the
TOV solution.

which is (relativistic) hydrodynamics.
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19 Introduction of Hydrodynamics

Hydrodynamics adopts two features: Coarse graining, i.e., the averaged
thermodynamic description of a system, and fast thermalization, i.e., the fact
that the �uid is locally assumed to be in a well-de�ned thermodynamic equi-
librium state 4 . Ideal hydrodynamics is based on the perfect �uid hypoth- 4 For it’s power of describing e�ective

phenomenae, hydrodynamics is sometimes
called an “e�ective theory of everything”.

esis: Dynamical timescales are much larger then viscous or heat transfer
timescales. Furthermore, the �uid is assumed to be isentropic, i.e., there are
no prefered direction e�ects. �is allows to assume stresses to be isotropic.
Furthermore, there is no heat transport and viscosity and no dissipation. Be-
yond the ideal theory, there are (more) realistic theories of hydrodynamics
which add particular features, such Navier-Stokes equations, the classical
theory of viscous �uids 5 . 5 In this thesis, only ideal �uids are cov-

ered, while references to extensions are
given at some points.

�e dynamical timescale of a gravitational systems is given by [385]

τdyn ∼ 1/
√
Gρ̄ , (19.1)

with an average rest mass density ρ̄ and here the explicit Newton’s con-
stantG. �e dynamical time scale of nuclear ma�er (nuclear density ρnuc ≈
2.3× 1017kg/m3) is τdyn ∼ 2× 10−4s. In comparison, the viscous and heat
timescales are typically of the order of 10+8s and therefore can be ignored.

�e relativistic perfect ideal �uid is described by the stress energy tensor

Tµν = ρhuµuν + pgµν , (19.2)

with rest mass density ρ, 4-velocityuµ = dxµ/dτ (which is timelike, uµuµ =

−1) and speci�c internal energy ε as part of the speci�c enthalpy h =

1 + ε + p/ρ. �e pressure p subsumes all physics on micro scales within
an equation of state p = p(ρ, ε). �e relativistic total energy density is
e = ρ(1 + ε) and gµν is the usual 4-metric.

Widespread simple equations of state are the one-parametric ideal-�uid
(or “Gamma-law”) equation of state p = ρε(Γ − 1) with the adiabatic /
polytropic index Γ, and the polytropic EOS p = κρΓ.

Hydrodynamics can be derived from a number of di�erent fundamental
principles, for instance the principle of minimal action [24] or from kinetic
theoryby applying a moment scheme to the Boltzmann equations [385].
While a derivation is out of the scope of this text, the equations of motion
as well as the resulting PDEs are discussed in the subsequent sections. �e
�uid dynamics are dictated by two conservation equations for the 4-energy
momentum tensor Tµν and for the rest mass (density �ux) ρuµ, i.e.,

Tµν = 0, ∇µ(ρuµ) = 0 . (19.3)

Instead of deriving the actual PDEs, the di�erent parts of the �ux-conser-
vative formulation of general realtivistic magnetohydrodynamics (GRMHD)
shall be discussed in the next sections 6 . �e state vector of GRMHD, 6 Naturally, such a discussion can either

be ordered top-down, i.e., starting from the
advanced theory and advancing into the
low-energy limit, or bo�om-up, i.e., start-
ing with the classical, easy theory and
advancing by proposing additions necces-
sary to ful�ll relativity, curved background
and to incorporate Maxwell’s theory. Both
approaches are well known in theoretical
physics. In this text, I decided for the
bo�om-up strategy.

QGRMHD = (QHD, QADM, QMD) , (19.4)

is a composite of state vectors which origin from three di�erent theories:
�e state vector of hydrodynamicsQHD (discussed in this section), the curved
background metric, collected in the parameterQADM (discussed in Section 20)
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and the state vector of magnetodynamics QMD (Section 21). �e seperation
of theories by fundamental building blocks is also sketched in Figure 19.1
and implemented in the SVEC GRMHD code.

19.1 Classical Hydrodynamics

Vhydro QB QADM

Qhydro

QMHD

Densitied QMHD

GRMHD State vector

Figure 19.1: State vector composition in
GRMHD, or in particular, in the SVEC code.

Hydrodynamics can be introduced by de�ning the primitive and conserved
state vector, where the later is evolved in time and the former is required
for the system closure, given by the pressure/equation of state. �e vectors
are given as

Primitive
vector

u =




rest mass density
velocity
internal energy


 =



ρ

vi

ε


 , (19.5)

Conserved
vector

QHD =




Conserved density
Momentum
Energy density


 =



D

Sj

E


 , (19.6)

related by QHD(u) =



ρ

ρvj

ρ/2v2 + ε


 7 . (19.7)

Classical hydrodynamics can be expressed in �ux-conservative form (2.1),

with �uxes F iHD(u) =




�uxes for D
�uxes for Sj
�uxes for E


 =



ρvi

W i
j

vi(E + p)


 . (19.8)

�e other PDE terms in (2.1) are vanishing. Here, we used the hydrody- 7 Note how easily the primitives u(Q) =

(ρ, Sj/ρ,E−ρ/(2v2)) can be analytically
recovered from the conserved variables (in
contrast to relativistic hydrodynamics, pre-
sented in the next section). �erefore, the
�uxes in equation (20.2) are also an alge-
braic function of the conserved state vector
only.

namic energy-momentum-tensor (EM tensor), given by 8

8 �e EM tensor is also refered to as
W ij = Sij in the literature (and in Sec-
tion 11.1).

W ij = Sivj + p δij . (19.9)

Classical hydrodynamics is a nonlinear theory. Within the ExaHyPE code, it
is widely used for performance measurements. Deriving the strong hyper-
bolicity of classical hydrodynamics is part of many books [385, 443]. �e
eigenvalues λi in k-direction in d dimensions are then found to be

λ1 = vk − c, λ2,...,d+1 = vk, λd+2 = vk + c , (19.10)

where c =
√

(∂ρp)s is the sound speed of the �uid. �e three di�erent wave
speeds stand out as di�erent waves in the Riemann problem (Section 2.3).

19.2 Special relativistic hydrodynamics (SRHD)

Special relativistic hydrodynamics is the extension of classical hydrody-
namics valid for high velocities (v → c), but remaining on �at background
spacetime.

�e 3-velocity vi of the �uid is extended in favour of the Lagrangian 4-
velocity uµ = (W,Wvµ), with Lorentz factor W = (1 − v2)−1/2 9 . �e 9 In the literature, alternative popular

namings are W = Γ, E = U . In any case,
do not confuse W with the conformal fac-
tor used in some conformal formulations of
Einstein Equations (see Section 12.2).

4-momentum/rest-mass current is then given by Sµ = ρuµ. �e content of
the primitive (19.5) and conserved vector (19.6) does not change. However,
the relationship (19.7) is replaced by

QSRHD(u) =



ρW

ρhW 2vj

ρhW 2 − p− ρW


 (19.11)
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with speci�c enthalpy h = 1 + ε + p/ρ 10 . �e conservative formulation 10 Some groups prefer to evolveQSRHD =

(D,Sj , τ) instead ofQSRHD = (D,Sj , E)
with τ = E −D the rescaled energy den-
sity. In fact we will also stick to this con-
vention.

of SRHD is then given by is then given by the �uxes

F iHD(u) =




�uxes for D
�uxes for Sj
�uxes for τ


 =



Dvi

W i
j

Si − viD


 . (19.12)

�e SRHD equations are hyperbolic for causal EOS [25, 202]. �e wave
speeds decompose similarly as in (19.10), where however the relationship
to the speed of sound c is nonlinear [202],

λ± =
vk(1− c2)± c

√
(1− v2)(1− v2c2 − v2

k(1− c2))

1− v2c2
(19.13)

and λ− := λ1, λ+ := λd+2 in the notation of (19.10).

19.3 The primitive recovery in relativistic hydrodynamics

Due to the nonlinear Lorentz factorW = W (v2), the recovery of the prim-
itive variables (19.5) from the conserved ones (19.6) is no more possible an-
alytically in SRHD. Instead, the inverse of (19.11) can be approximated by
numerical root �nding. �e standard approach is to solve a single or multi-
ple nonlinear equations. For instance, the authors of [154, 348] propose to
solve a simple nonlinear 2× 2 system which reads for SRHD as

y2x− S2 = 0

y − p− E = 0

}
, (19.14)

with x = v2, y = ρhW 2. Once x and y are determined numerically, all
primitives can be recovered by computing W = (1 − x)−1/2, ρ = D/W ,
vj = Sj/y, h = Sj/(vjρW

2) and for instance with the ideal gas (from
above), ε = h/(1 +W ) 11 . 11 Obviously any non-analytic EOS raises

new issues at this point which are again
subject to numerical treatment.

20 General relativistic hydrodynamics (GRHD)

General relativistic hydrodynamics is the theory which described �uids mov-
ing within an (external) gravitational potential. �e (special) relativistic
�uid follows the de�nitions from the previous section. �e coupling of the
background spacetime is mediated by a source term in the law of motion.

A fully general relativistic description implies also ma�er backreaction
on the spacetime (the �uid bends spacetime itself), according to Einstein’s
�eld equations (EFE, Chapter II). In this case, the EFE determine the dy-
namics of the geravitational �eld under the presence of a source term (the
energy momentum tensor of the �uid). Section 20.4 discusses the simpli�-
cations which can be made to the GRMHD equations when the backreaction
is neglected.

20.1 3+1 split of special relativistic hydrodynamics

�e “Valencia formulation” of GRHD presented in this thesis dates back to
the pioneering work of Martı́ et al. [57, 252, 315] in 1991. �ey where the
�rst to make a characteristic approach to relativistic hydrodynamics in a
3+1 split of spacetime 12 . 12 see Section 11.1 on page 44 for the def-

initions of normal vector nµ, lapse α, shi�
βi and 3-metric γij .
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In the 3+1 split, the Lagrangian velocityuµ can be casted asuµ = W (nµ+

vµ) and the 3-velocity as vi = ui/W + βi/α. �e 3+1 language also o�ers
beatiful interpretations, for instance is the projection of the �uid 4-velocity
on the purely spatial hypersurfaces just the Lorentz-decorated 3-velocity,
γµν u

ν = Wvµ. Formally, the 3-energy-momentum-tensor can be inter-
preted as extension from the �at case,

W ij
HD = W ij

SRHD = Sivj + pδij ↔ W ij
GRHD = Sivj + pγij . (20.1)

�e SRHD �uxes are re�ned as

F iHD(u) =




�uxes for D
�uxes for Sj
�uxes for τ


 =



Dwi

αW i
j − βiSj

α(Si − viD)− βiτ


 (general W ij )

(20.2)

=



Dwi

Sjw
i + pδij

τwi + pvi


 (only W ij = Sivj + pγij )

(20.3)

It is convenient to write the �uxes with the vector wi = αvi − βi which
is refered to as the advection velocity relative to the coordinates, or just
transport velocity 13 . With the replacment of vi → wi, the GRHD �uxes 13 Note that wi does not transform like a

3-vector. However, we introduce it only for
abbreviation on the paper and for saving
contractions in the computer.

(20.3) have (almost) a similar shape as the SRHD �uxes (19.12).
In order to fully describe the state of a GRHD system, the local curvature

must be encoded in the state vector 14 . �erefore, the ADM state vector is 14 �e ADM state is constant for the
GRHD PDE, as the modi�cation of the back-
ground spacetime is prescribed by Einstein
�eld equations, which are however a PDE
on their own (Chapter II). In ExaHyPE lan-
guage, an entry in the state vector which
is not evolved by the PDE, i.e., which ful-
�lls ∂tQk = 0, is called a “material pa-
rameter”. �is term comes from seismology
where non-evolved parameters describe the
immutable soil properties (in GR lingua,
the “background” spacetime) which are un-
changed by the waves described by the
PDE.

de�ned as
QADM = (α, βi, γij ,Kij) . (20.4)

�e GRHD system is hyperbolic [201], and the eigenvalues in k direction
are given by

λ0 = αvk − βk , (20.5)

λ± =
α

1− v2c2s

(
vk(1− c2s)

± cs
√

(1− v2) (γkk(1− v2c2s)− vkvk(1− c2s))
)
− βk , (20.6)

with the local sound speed cs =
√
∂ρp+ p/ρ2∂εp/h.

20.2 Conformal factor

In the Valencia formulation, the PDE system is wri�en in terms of tensor
densities. �e determinant of the metric γ = det(γij) relates the tensor
densities with an ordinary tensor. �e 3-determinant is related to the deter-
minant of the four-metric by

√−g = α
√
γ. �e system is then formulated

as 15 15 Here the full system (2.3) is given, even
if some terms are zero for certain sys-
tems (such as the algebraic and di�erential
source for HD and SRHD).

∂t(
√
γQ) + ∂i(

√
γF i) +

√
γBi∂i(

√
γQ) =

√
γS. (20.7)

�e PDE as given in (20.7) de�nes the state Q, the �uxes F i, the non-
conservative partBi and the algebraic source S without the factor√γ. �is
convention will be retained for the following sections. Note that, however,
the vector √γQ is evolved in time.
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20.3 Sources for curved spacetimes

In presence of a curved background, the spacetime coupling introduces a
source. �e governing equations of GRHD are therefore a balance law (2.2)
instead of a conservation law (2.1). �e source term induced by the space-
times, wri�en with Christo�el symbols, read 16 16 Note the use of 4-dimensional tensors

except the lapse α. See also Appendix A1.2
for the standard de�nitions of the Christof-
fel symbols of �rst kind Γkij and 4-metric
gµν .

SHD(u) =




source for D
sources for Sj
source for τ


 =




0

Tµν∂µgνj − ΓδνρgρjT
µν

αTµ0∂µ lnα− αTµνΓ0
µν


 . (20.8)

In order to determine the 4-energy-momentum-tensor

Tµν = ρhW 2(nµ + vµ)(nν + vν) + p(γµν − nµnν) , (20.9)

the 4-velocity uµ or the normal vector nµ have to be recovered. �is can
be circumvented by using spatial tensors only: �e equivalent “Christo�el
symbol free” source terms, as used in [376], read

SHD(u) =




0
α
2S

lm∂jγlm + Sk∂jβ
k − E∂jα

αSijKij − Si∂iα


 . (20.10)

�e sources can also be wri�en without computing the 3-energy-momentum-
tensor Sij , exploiting

(
∂i
√
γ
)
/
√
γ = 1

2γ
lm∂iγlm, 17 17 However, (20.11) requires to compute

∂i
√
γ, which must then be (formally) part

of the state vector if the non-conservative
product approach is chosen.SHD(u) =




0
α
2S

lvm∂jγlm + αp 1√
γ ∂j
√
γ + Sk∂jβ

k − E∂jα
αSlvmKlm − αpγlmKlm − Si∂iα


 (20.11)

All terms in the source except the red one(s) contain derivatives of the ADM
state vector (20.4). �is motivates to extend the de�nition of the curvature
state vector as

Q̃ADM = (α, βi, γij ,Kij , ∂iα, ∂iβ
j , ∂iγjk) . (20.12)

If (20.12) is chosen in favour of (20.4), then the GRHD source term is a purely
algebraic one. In preparation of a coupled evolution of GRHD with space-
time, either QADM or Q̃ADM must be evolved in time. In fact, all quantities
(20.12) are part of the FO-CCZ4 state vector (14.7), proposed in Section 14.
�erefore, the GRHD part in a coupled evolution of the presented GRHD
system with the FO-CCZ4 formulation is of the form

∂tQHD + ∂iF
i
HD(QHD, Q̃ADM) = SHD(QHD, Q̃ADM) . (20.13)

In contrast, an ordinary second order formulation of EFE would instead
evolve only QADM in time, i.e., without the derivatives. In such a case, the
di�erential and algebraic split of the source term (Section 2.1) is applicable.
Part of the work carried out in [194] is to cast the PDE as (2.3), i.e., to cast
all non-red summands as Bijk (QADM, QGRHD)∂i(QADM)j .

In order to cast these PDEs into the algebraic-di�erential source split
(2.3), all black terms obtain an extra minus when they are moved from the
RHS to the LHS. �e �nal GRHD system reads then (colors now omi�ed):

(BGRHD)
ij
k ∂iQj =




0

−α2Slm∂jγlm − Sk∂jβk + E∂jα

Si∂iα


 , SGRHD =




0

0

αSijKij


 .

(20.14)
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20.4 Cowling approximation

In case of a stationary spacetime (Cowling approximation [146], character-
ized by ∂tgij = 0), one can simplify the source terms and get rid of the
contraction [222, 328, 465]

SijKij =
1

2α
Sikβj∂jγik +

1

α
Sji ∂jβ

i . (20.15)

In this particular case, (20.10) simpli�es to

SHD,Cowling(u) =




0
α
2S

lm∂jγlm + Sk∂jβ
k − E∂jα

1
2S

ikβj∂jγik + Sji ∂jβ
i − Si∂jα


 . (20.16)

In this special case, it is possible to write the GRHD equations without any
algebraic source term. All terms in (20.16) can then be casted in the form
B∂iQ. �is allows to split the PDE as 18 18 In the form (20.17), the �ow on a back-

ground spacetime is drescribed similiarly
as in the shallow-water equations, where
the bo�om-slope term (which accounts for
gravitational forces) can also be cast as a
non-conservative product [129, 130, 357].

∂tQ
k + ∂iF

i(Q)︸ ︷︷ ︸
Hydro. contribution

+ Bijk∂iQj︸ ︷︷ ︸
Background contribution

= 0 . (20.17)

In the numerical schemes proposed in Section 6, the absence of an alge-
braic source is desirable, as it supports the well-balanced property of these
schemes.

21 General relativistic magnetohydrodynamics (GRMHD)

�e general relativistic magnetohydrodynamics (GRMHD) equations are
the consequence of the coupling of Euler equations (Hydrodynamics, GRHD)
to Maxwell equations (Magnetodynamics, MD). In the popular ideal MHD
approximation, the electric �eld ~E = ~B×~v is fully determined by the mov-
ing �uid. In this approximation, the Faraday tensor Fµν (with 6 degrees of
freedom, ~E and ~B) reduces to the magnetic �eld ~B only, therefore the vector
of conserved variables in Magnetodynamics is just QMD = (Bi). 19 �is 19 We add further evolution equations in

case of the divergence cleaning technique.
However, note that there is no distinction
between primitive and conserved variables
in Magnetodynamics.

approximation is appropriate to describe a wide variety of astrophysical
phenomena where the electrical conductivity of the plasma (description of
ma�er) is very high. In the ideal MHD approximation, the electrical conduc-
tivity σ →∞ is assumed to be divergent. �e electrical �eld is completely
determined by the �uid velocity and the magnetic �eld. �e magnetic �ux
φB = BiS

i over any surface S is conserved,
∮

∂S

(E + v ×B) · d` = −dφB
dt

= 0 , (21.1)

and is advected with the �uid movement. �e magnetic contribution to the
hydrodynamics equations, i.e., the MHD equations, is then just a conserva-
tion equation for the magnetic �eld.

21.1 Magnetodynamics

�e photon �eld (Maxwell in vacuum, i.e., without charge carriers) has the
momentum densityS = E×B (Poynting vector), total energy densityU =
1
2

(
E2 +B2

)
and energy-momentum tensorW jk = Uγjk−EjEk−BjBk .
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�e electric �eld E in the Eulerian frame is determined by the simpli-
�ed Ohm’s law i.e., Ei = −ε̃ijkvjBk in the ideal MHD limit (i.e., for di-
verging electrical conductivities). �e cross product is given by the spatial
three-Levi-Civita tensor density ε̃ (see Appendix A1.2 for the de�nition).
�erefore, the momentum density and energy momentum tensor can be
expressed, using only v andB, as

SMD
i = ε̃ijkE

jBk = −ε̃ijk ε̃jmnvmBnBk = vi
(
BkB

k
)
−Bi

(
vkB

k
)
,

W jk
MD = Uγjk −BjBk/W 2 − (Bkvk)vjBk . (21.2)

21.2 The GRMHD coupling

�e Maxwell theory (Magnetodynamics) in�uence the hydrodynamic �ow
with the (energy) momentum contributions (21.2), while the Euler theory
determines the electrical �eld in the presented ideal magnetodynamic ap-
proximation. Furthermore, the pressure p get’s a magnetic contribution and
is replaced in (20.1) and (20.9) as

p→ ptot = pHD + pMD with pMD =
1

2

(
BjB

j/W 2 + (Bjvj)
2
)

(21.3)

being the pressure contribution from ideal magnetodynamics. �e total
energy-momentum tensor is the sum of all involved theories, thus the GRM-
HD energy momentum tensor is given, for completeness, here as

W ij
GRMHD = W ij

HD +W ij
MD = W ij

HD(pHD + pMD) +W ij
MD

= Sivj + ptotγ
ij − BiBj

W 2
− (Bkvk)viBj .

(21.4)

Consequently, also the conserved quantities are given by

QGRMHD(u,QMD) =



D

Sj

τ


 =



ρW

DhWvj +B2vj − (Bivi)Bj

D(hW − 1)− p+ 1
2

(
B2(1 + v2)− (Bjvj)

2
)




(21.5)

21.3 Fluxes and sources

�e evolution variables in GRMHD are

QMHD = (QHD, QMD) = (D,Sj , τ, B
j) . (21.6)

It should be emphasized that the vector of primitive variables (19.5) does
not change (increase in size), the primitive recovery takes only place for the
hydrodynamic part of the GRMHD equations. �e MD conserved vector is
just QMD = (Bj) and its evolution is given by the induction equation

∂tB
j + ∂i(w

iBj −Biwj) = 0 , (21.7)

i.e., the new PDE has �uxes and sources

F i(Q) = wiBj −Biwj , S(Q) = 0 . (21.8)

�e GRMHD equations are hyperpolic. For the characteristic wave speeds
in GRMHD, a popular choice is the magnetosonic approximation [212]. �e
evolution equation (21.7) does not handle the magnetic �eld divergence,
which is covered in the next section.
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21.4 The divergence cleaning (constraint damping) formulation

�e Maxwell magnetic monopole constraint ∂iBi = 0 can be casted as
hyperbolic conservation law with a Generalized Lagrangian Multiplier ap-
proach (GLM) also refered to as divergence cleaning, initially proposed by
[153]. In this approach, the MHD system is augmented with an additional
auxiliary equation for an arti�cial scalar �eld ψ in order to propagate away
numerical violations of the divergence-free constraint 20 . Hence, the PDE 20 �ere are in fact other techniques to en-

sure in the divergence freedom of the mag-
netic �eld on a numerical level, such as con-
strained transport.

(21.7) is replaced by two di�erent PDEs. �e MD conserved vector is now
QMD = (Bj , φ). �e modi�ed �uxes and sources read [157, 356, 362]

F i(Q) =

(
�uxes for Bj

�uxes for φ

)
=

(
wiBj − vjBi −Biβj
αBi − φβi

)
(21.9)

S(Q) =

(
sources for Bj

sources for φ

)
=

(
−Bi∂iβj − αγij∂iφ
−ακφ− φ∂iβi − 1

2φγ
ijβk∂kγij +Bi∂iα

)

(21.10)

Here, κ is the damping term which controls the amount of damping applied
on the �eld φ. In the sake of a sane balance law with purely di�erential
source terms, κ = 0 is a choice also carried out in [196]. �is choice re�ects
pure transport and no damping.

Notably, the divergence cleaning formulation introduces additional sourc-
es which are mostly non-conservative (as in the case of GRHD) except of
the damping term (displayed in red). �us, from all presented equations,
only a Cowling-GRMHD formulation with divergence cleaning and κ = 0

has zero algebraic sources.

22 Benchmarks and GRMHD codes

In the following sections, the solution of various academic benchmark sce-
narios is demonstrated. �ese solutions have been obtained with the path-
conservative ADER-DG scheme presented in section 6.

In the ExaHyPE code, the full set of GRMHD equations on dynamical
spacetime with divergence cleaning is implemented. �e evolution quanti-
ties are given by QGRMHD = (D,Sj , τ, B

i, φ) and the PDE (2.3) terms are
given by 21 21 �e PDE presented in [194] completely

avoids the algebraic source S = 0, since
all tests presented in the paper are carried
out with stationary spacetime. �us the hy-
drodynamic source term from Section 20.4
is shown in [194].F i(Q) =




�uxes for D
�uxes for Sj
�uxes for τ
�uxes for Bj

�uxes for φ




=




wiD

αW i
j − βiSj

α(Si − viD)− βiτ
wiBj − vjBi −Biβj
αBi − φβi



, (22.1)

Bij∂iQj =




0

−α2Slm∂jγlm − Sk∂jβk + E∂jα

Si∂iα

Bi∂iβ
j + αγij∂iφ

φ∂iβ
i + 1

2φγ
ijβk∂kγij −Bi∂iα



, S =




0

0

αSijKij

0

−ακφ



.

�e numerical code consists of three parts: �e fundamental AMR code,
the numerical scheme which can solve a generic prototypic PDE (see in
general Chapter I), and the particular PDE parts, provided in 22.1. Such an
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Section Name of Test (Initial Data) BC ~B 6= 0 Smooth Spacetime

23.1 Michel accretion onto a Schwarzschild black hole in 2D exact 7 3 curved
23.2 Torus interior around a Schwarzschild black hole in 2D exact 7 3 curved
23.3 3D Michel accretion with radial magnetic �eld exact 3 3 curved
24.1 Riemann problems exact 3 7 �at
24.2 Advection of a 2D magnetic �eld loop periodic 7 7 �at
24.3 2D blast wave out�ow 7 7 �at
24.4 Orszag-Tang vortex periodic 7 7 �at
25.1 2D torus around a Schwarzschild black hole exact 3 7 curved
25.2 3D torus around a Schwarzschild black hole exact 3 7 curved
25.3 Preliminary results on a TOV star out�ow 3 7 curved

Table 22.1: Overview of hydrodynamic
benchmarks presented in the following sec-
tions. �e columns are explained in the
main text.

implementation requires to perform a primitive recovery (Section 19.3) at
every evaluation of F i, Bij and S.

22.1 Benchmark description

Table 22.1 provides an overview about the benchmarks which are presented
on the next pages. �e tests require either one, two or three spatial dimen-
sions 22 . Some tests only cover the hydrodynamic part of the equations 22 Since ExaHyPE supports only two and

three dimensional setups, one dimensional
tests are performed in two dimensions
straightforward as se�ing the initial data
Q0(x, y) = Q0(x).

and set the magnetic �eld ~B = 0. Furthermore, “smooth �ows” are dis-
tinguished from “non-smooth �ows”. Smoothness is de�ned as having con-
tinous initial data which can be well-represented by DG polynomials and
do not require limiting. For smooth �ows, the actual convergence order of
the scheme can be measured (and is provided). For non-smooth �ows, the
ability of the code to handle accurately shocks and large gradients will be
illustrated. Unless stated otherwise, all tests share the following properties:

(i) An ideal EOS is adopted with the adiabatic index has been chosen
equal to Γ = 4/3.

(ii) �e re�nement factor is alwaysR = 3.

(iii) Any method requiring ADER-DG limiting employs the second-order
MUSCL-Hancock TVD �nite-volume method (described in section 5.4).

(iv) As a Riemann solver, the the Rusanov (or local Lax-Friedrichs) approx-
imate Riemann solver has been used.

(v) problems in curved spacetimes have been solved employing Kerr-Schild
coordinates, either spherical or Cartesian.

At the spatial boundary interface ∂Ω (column “BC” in Table 22.1), either ex-
act boundary conditions are applied (i.e., the initial conditions are used as
external domain boundary values) or “copy boundary conditions” with out-
�ow properties for hydrodynamical �ows are applied (i.e., the last internal
state vector is used as an external value).

23 Smooth special-relativistic benchmarks

To ensure that the �ow is actually smooth, in the following tests we will re-
strict our computational domain to regions that are fully �lled with �uid. In
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this way, a�er successively re�ning the mesh, we evaluate the L2 and L∞
error norms at di�erent DG polynomial degrees and mesh resolutions so as
to to measure the convergence order of our numerical implementation and
compare it with the expected mathematical one. Anticipating what will be
shown in more detail in the following sections, the numerical results con-
�rm the high order of accuracy of the presented numerical scheme. Indeed,
using the results shown in Tables 23.3 and 23.1 we can conclude that the
ADER-DG PN method reaches its design accuracy N + 1 in most cases.

23.1 Michel accretion onto a Schwarzschild black hole in 2D
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Figure 23.1: Numerical solution for the
two-dimensional Michel accretion test in
KSS coordinates obtained with our ADER-
DG P5 at t = 100. �e numerical solution
of density (black) and radial velocity (red)
interpolated along 200 points at θ = 1.5

are shown.

Nx EL2
EL∞ L2 L∞

D
G-

P
1

10 5E-05 9E-05 – –
20 1E-05 2E-05 2.13 2.08
40 3E-06 5E-06 2.06 2.05
80 7E-07 1E-06 2.03 2.02

D
G-

P
2

6 2E-05 3E-05 — —
12 3E-06 4E-06 2.93 2.87
18 1E-06 1E-06 2.93 2.91
30 2E-07 3E-07 2.94 2.93

D
G-

P
3

4 3E-07 1E-06 — —
6 5E-08 1E-07 4.65 4.59
8 1E-08 4E-08 4.21 4.51

12 3E-09 8E-09 3.96 4.35

D
G-

P
4

2 3E-06 5E-06 — —
3 4E-07 5E-07 5.51 5.77
4 9E-08 1E-07 5.22 4.97
5 2E-08 4E-08 5.18 4.93

D
G-

P
5

2 6E-08 3E-08 — —
3 4E-09 2E-09 6.68 6.50
4 6E-10 3E-10 6.31 6.30
5 1E-10 1E-10 6.27 5.83

D
G-

P
6

2 1E-08 4E-09 — —
3 4E-10 2E-10 7.81 7.21
4 5E-11 3E-11 7.43 6.72
5 1E-11 8E-12 7.37 6.71

Table 23.1: L2 and L∞ errors and con-
vergence rates for the 2D Michel accretion
in spherical Kerr-Schild coordinates for the
ADER-DG-PN scheme. We report the con-
vergence results for the rest-mass density
ρ at t = 10 up to N = 6, and contrast
the results with the expected rate. �e do-
main has been chosen di�erent (enlarged)
for the cases N = 5 and N = 6 in or-
der to keep away the numerical error from
the machine limit. Similar results have also
been obtained for all other �ow variables.

As a �rst test of a smooth �ow with an analytical solution we consider the
spherical transonic accretion of an isentropic �uid onto a nonrotating black
hole is known as Michel solution [325]. For the sake of completeness we
give the explicit expressions of the lapse, the shi� and the spatial metric of
a Kerr black hole with mass M and spin a in Cartesian Kerr-Schild coordi-
nates ~r = (x, y, z):

α = S−
1
2 , βi =

2H

S
li , H = M

r3

r4 + a2z2
, S = 1 + 2H , (23.1)

γij =




1 + 2Hl2x 2Hlxly 2Hlxlz

2Hlxly 1 + 2Hl2y 2Hlylz

2Hlxlz 2Hlylz 1 + 2Hl2z


 , (23.2)

with lx :=
rx+ ay

r2 + a2
, ly :=

ry − ax
r2 + a2

, lz :=
z

r
(23.3)

and r =

√√√√ |~r|2 − a2

2
+

√( |~r|2 − a2

2

)2

+ z2a2 . (23.4)

Conversely, the Kerr metric in spherical Kerr-Schild coordinates (r, θ, φ) is
given by [272]

α = (1 + z)−
1
2 , βi =

(
z

1 + z
, 0, 0

)
, (23.5)

γij =




1 + z 0 −a sin2 θ(1 + z)

0 ρ2 0

−a sin2 θ(1 + z) 0 Σ sin2 θ/ρ2


 , (23.6)

with ρ2 := r2 + a2 cos2 θ , z :=
2r

ρ2
, (23.7)

∆ := r2 + a2 − 2Mr , Σ = (r2 + a2)2 − a2∆ sin2 θ . (23.8)

�e metric (23.6) without spin (a = 0), with black hole mass M = 1 and
(arbitrarily chosen) critical radius rc = 8M and critical density ρcM2 =

1/16 allows to determine the Michel solution analytically [385].
�is test was performed in spherical Kerr-Schild coordinates with a spa-

tial domain (r, θ) ∈ Ω = [1.5, 100]× [0.15, 3.0], i.e., the simulation domain
penetrates the event horizon but does not include the singularity. �e spa-
tial domain is discretized with a uniform mesh of 200 × 32 elements and
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solved with the ADER-DG P5 scheme. A graphical representation of the
numerical results and their comparison with the analytic solution is shown
in Fig. 23.1, while the results of the convergence study are provided in Ta-
ble 23.1. Clearly, we can note an excellent agreement between analytical
and numerical solution and that the la�er converges at the expected and
high order.

23.2 Torus interior around a Schwarzschild black hole in 2D

Figure 23.2: Example of a thick torus con-
�guration, two dimensional cut in the az-
imuth plane (θ = 0). Colour encodes
the rest mass density ρ (Logarithm of so-
lar mass units) within the Roche lobe. Solid
lines indicate equipotentials.

In this test, a numerical convergence study of a stationary solution of a
thick disk (also refered to as Polish donut or axisymmetric test-�uid torus)
orbiting around a Schwarzschild black hole (a = 0) of mass M = 1 in 2D
spherical Kerr-Schild coordinates. �e theory of the equilibrium of these
non-selfgravitating �uids in GRHD has been �rst proposed by [2, 281] and
has been the subject of a vast literature. For completeness, we give in the
following a brief description of the setup of the primitive variables of this
test problem, referring to [31, 154, 203, 385] for details about a more gen-
eral con�guration of the �uid, depending on the selected values of physical
parameters.

Torus description

Figure 23.3: Surfaces with constant Ω =

Ω(`) are also refered to as von Zeipel’s cylin-
ders. Figure modi�ed from [203].

�e acceleration experienced by a test �uid rotating around around a Schwarz-
schild black hole (cylindrical symmetry) can be cast into the following dif-
ferential equation

d log |ut| −
(

Ω

1− Ω`

)
d`+

dp

ρh
= 0 , (23.9)

with speci�c angular momentum `(r, θ) := −uφ
ut
, (23.10)

and (coordinate) angular velocity Ω(r, θ) :=
uφ

ut
, (23.11)

For barotropic �uids the last di�erential on the right in Eq. (23.9) is exact,
i.e., one can de�ne the e�ective potentialW via

W −Win := −
∫ p

0

dp̃

ρh
= log |ut| − log |(ut)|in −

`∫

`in

Ωd˜̀

1− Ω˜̀
. (23.12)

In the case considered here, the speci�c angular momentum is assumed to
be constant ` = `0 = const., so that it is possible to obtain an explicit and
simpli�ed expression for the potential

W(r, θ) = log |ut| , (23.13)

where, for a Schwarzschild black hole, one has

ut = −r sin θ

(
r − 2

r3 sin2 θ − `2(r − 2)

) 1
2

. (23.14)

In the axisymmetric equilibrium torus, there are some special radial po-
sitions in the equatorial plane (θ = π/2) that are worthwhile recalling: the
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inner and outer edge of the torus rin and rout; the radial position of the
cusp, rcusp; the radial position of the maximum pressure peak, rc, which
is the center of the torus; the radial position of the “marginally stable” and
“marginally bound” orbit, rms and rmb. �e cusp position rcusp and the centre
rc can be identi�ed as the local extrema of the e�ective potential, but also by
the condition `K = `0, where `K is the Keplerian speci�c angular momen-
tum which is given by `2K(r) := Mr3/(r−2M)2. Similarly, also rms and rmb

are identi�ed by the condition `K = `ms and `K = `mb. For a Schwarzschild
(nonrotating) black-hole: `ms = (3

√
6/2)M and `mb = 4M , so that the cor-

responding to the radial positions are rms = 6M and rmb = 4M .

Figure 23.4: Torus potentials, Figure modi-
�ed a�er [203]

Finally, the inner and outer radial position, rin and rout, can be estimated
by the condition ∆W :=Win−Wcusp = 0. Indeed, whenever ∆W > 0 the
orbit of the corresponding �uid particle is open, whenever (Wc −Win) <

∆W < 0 the orbits are closed. �e spatial volume delimited by the widest
closed equipotential surface of the torus, i.e.,W = Wcusp is named as the
“Roche lobe” of the torus. Using these de�nitions, several constraints need
to be satis�ed: �rst, the cusp rcusp must necessarily be located within rmb

and rms, and the inner edge rin can be located anywhere within rcusp and rc.
For isentropic �uids obeying the polytropic EOS (p = KρΓ), an analytical
expression for the rest-mass density exists and takes the form

ρ(r, θ) =

[
Γ− 1

KΓ
(exp(Win −W(r, θ))− 1)

]1/(Γ−1)

(23.15)

A�er choosing the value of the polytropic constant K , polytropic ex-
ponent Γ, the speci�c angular momentum `0, and the potential gap ∆W ,
then the Keplerian points are estimated a�er ensuring the following scalar
equalities: for the radial cusp position rcusp,

Figure 23.5: �e theory of thick tori can
also be applied to other spacetimes with
cylindrical symmetry, for instance to the
sapcetime of a neutron star (shown here
in a surface countour plot of the rest mass
density ρ). �is arti�cially created object
(linear superposition of two spacetimes) re-
mains surprisingly stable during evolution.

`K(r) = `0 , with rhor < r < rms , (23.16)

for the center rc, rhor being the radial position of the horizon,

`K(r) = `0 , with rms < r . (23.17)

�en, the corresponding potentials Wcusp. and Wc are evaluated accord-
ing to Eq. (23.13). On the other hand, the e�ective potential at the inner
edgeWin is computed according to the prescribed potential gap ∆W a�er
estimating

(ut) in = (ut) cusp e
∆W . (23.18)

�en, since the �uid distribution is inside the Roche lobe, the inner and
outer edge positions rin and rout are computed through the conditions

ut(r) = (ut) in with rcusp < r < rc , (23.19)
and ut(r) = (ut) in with rc < r , (23.20)

respectively. �e rest-mass density at the center ρc is provided directly by
the analytical solution (23.15), the corresponding pressure pc through the
EOS. Finally, for every spatial position (r, θ) within the torus, i.e., which
ful�ls the condition

r > rin and W <Win , (23.21)
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the angular velocity Ω(r, θ) is computed through the de�nition (23.10), the
rest-mass density ρ directly from (23.15), and the velocity is given by

(vr, vθ, vφ) =

(
βr

α
, 0,

1

α
(Ω + βφ)

)
. (23.22)

Torus evolution

Nx EL2 EL∞ L2 L∞

D
G-

P
1

10 5E-07 2E-06 — —
20 1E-07 9E-07 1.68 1.55
30 7E-08 4E-07 1.83 1.84
40 4E-08 2E-07 1.86 1.92

D
G-

P
2

10 5E-08 1E-07 — —
15 1E-08 5E-08 2.65 2.47
20 8E-09 2E-08 2.64 2.78
30 2E-09 7E-09 2.70 2.70

D
G-

P
3

8 3E-09 1E-08 — —
10 1E-09 9E-09 3.69 3.13
15 3E-10 2E-09 4.04 3.79
20 1E-10 7E-10 3.69 3.64

D
G-

P
4

2 1E-07 3E-07 — —
3 1E-08 3E-08 5.57 5.44
4 3E-09 1E-08 4.10 4.29
5 1E-09 5E-09 4.08 3.04

Table 23.2: L2 and L∞ errors and conver-
gence rates on the rest mass density ρ for
the 2D torus-interior problem in spherical
Kerr-Schild coordinates for the ADER-DG-
PN scheme. We report the convergence re-
sults for the rest-mass density ρ at t = 10

up to N = 4. �e expected convergence
rate is always N + 1. Similar results have
also been obtained for all other hydrody-
namic variables.

�e free parameters of the problem have been chosen to be a speci�c angular
momentum of `0 = 3.8, a potential gap ∆W = −10−3 (inside and nearly
�lling its Roche lobe). �e polytropic constant and exponent have been
chosen equal to K = 0.0496 and Γ = 4/3, respectively.

Also in this case, for a rigorous testing of the convergence order we have
simulated only an inner portion of the torus which is fully �lled by �uid,
namely, the one covered by the coordinate patch (r, θ) ∈ Ω = [7, 10.5] ×
[1.47, 1.67]. �e corresponding measured convergence order a�er evolv-
ing the set of the GRHD equations in spherical Kerr-Schild coordinates are
reported in Table 23.2, once again showing the expected high order of con-
vergence of our ADER-DG scheme. We conclude this test by remarking that
torus simulations where the torus is fully contained in the computational
domain, which therefore includes also a region set to atmosphere, will be
presented in Sec. 25.1.
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Figure 23.6: Numerical solution for the 3D
Michel accretion test with radial magnetic
�eld in KSC coordinates obtained with our
ADER-DG P3 at t = 20. Le� panel: 3D
visualization of the numerical solution and
mesh: the space elements at y < 0 are arti-
�cially blanked (not-visible), at y > 0 are
coloured by the rest-mass density. More-
over, the computed density is shown also
along the 2D cut-plane y = x ≤ 0 to-
gether with the stream-traces of the mag-
netic �eld. Right panel: numerical solution
interpolated along 200 points at z = 0 and
y = x for the rest-mass density (red), the x
component of the velocity (green) and mag-
netic �eld (blue) vectors are plo�ed next to
the analytical solution. �e numerical do-
main is x ∈ Ω = [−5, 5]3. Published in
[194].

23.3 3D Michel accretion with radial magnetic field

�is is the 3D version of the similar test presented in Sec. 23.2, with the
addition of one spatial dimension (corresponding to the azimuthal Killing
vector) and of a radial magnetic �eld. Although such a magnetic �eld is un-
physical, since it leads to a nonzero divergence and hence to the presence
of a magnetic monopole, it is nevertheless widely used for testing GRMHD
codes [192]. Here, we use it to test the convergence order of our high-order
method by considering also the magnetic component of the set of partial
di�erential equations. In addition, to stress-test our numerical infrastruc-
ture, we have employed for this test 3D Cartesian KS coordinates, so that
the magnetic �eld lines are not aligned with any of the coordinate axis. �e
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chosen contravariant components of the radial magnetic �eld take the form

Bi(x, t) = γ−
1
2M2B0

xi

r2
, with B0 =

2.688

M

(
b2

ρ

) 1
2

hor
, (23.23)

where the black-hole mass is again set to M = 1 and bµ is the magnetic
�eld measured by the Lagrangian observer comoving with the �uid, i.e.,

bµ :=
(δµν + uµuν)Bν

−nνuν
. (23.24)

Nx EL2
EL∞ L2 L∞

D
G-

P
1

10 6E-04 2E-04 — —
20 1E-04 8E-05 1.9 1.3
30 7E-05 4E-05 2.0 1.6
40 4E-05 2E-05 2.0 1.8

D
G-

P
2

10 3E-05 2E-05 — —
15 1E-05 7E-06 2.5 2.9
20 6E-06 3E-06 2.4 2.4
30 2E-06 1E-06 2.4 2.4

D
G-

P
3

8 1E-06 1E-06 — —
10 6E-07 3E-07 4.4 5.0
15 1E-07 6E-08 4.3 4.2
20 3E-08 1E-08 4.2 4.5

D
G-

P
4

6 4E-07 4E-07 — —
8 1E-07 9E-08 5.0 5.0

12 1E-08 1E-08 5.0 5.1
16 3E-09 2E-09 5.0 5.3

D
G-

P
5

4 1E-07 3E-07 — —
6 1E-08 3E-08 6.5 5.8
8 2E-09 6E-09 5.9 6.1

10 6E-10 1E-09 5.8 6.1

D
G-

P
6

6 1E-06 1E-06 — —
8 1E-07 3E-07 6.9 5.2

10 4E-08 1E-07 6.3 5.7
12 1E-08 3E-08 6.1 5.9

Table 23.3: L2 and L∞ errors and con-
vergence rates for the 3D Michel accre-
tion with radial magnetic �eld in Cartesian
Kerr-Schild coordinates for the ADER-DG-
PN scheme. We report the convergence re-
sults for the magnetic �eld component Bx
at t = 10 up toN = 6, and contrast the re-
sults with the expected rate. Similar results
have also been obtained for all other �ow
variables.

�e spatial domain is in this case given by (x, y, z) ∈ Ω = [−5,+5]3

and is partitioned with a uniform mesh of 303 elements, where we have
employed a very simple cubic excision to avoid the singularities at the co-
ordinates’ origin location of the black hole as shown in the le� panel of Fig.
23.6. At the excision boundary, we impose the exact solution of the problem
as boundary condition in all variables.

A�er adopting a ratio (b2/ρ)hor = 4 at the horizon, the results of the
convergence study are presented in Table 23.3, while graphical representa-
tion of the numerical results is o�ered in the right panel of Fig. 23.6, which
reports the numerical solution interpolated along 200 points at z = 0 and
y = x for the rest-mass density and the x-component of the velocity and
of the magnetic �eld vectors as plo�ed against to the analytical solutions.
Clearly, also in this case the numerical solution is shown to converge at the
expected order of accuracy, con�rming the validity of our implementation
in the presence of a magnetic �eld and of a nontrivial coordinate mapping.

24 Non-smooth special-relativistic benchmarks

RP1 RP2

x > 0 x ≤ 0 x > 0 x ≤ 0

ρ 0.125 1.0 1.0 1.08
vx 0 0 -0.45 0.40
vy 0 0 -0.2 0.3
vz 0 0 0.2 0.2
p 0.1 1.0 1.0 0.95
Bx 0.5 0.5 2.0 2.0
By -1.0 1.0 -0.7 0.3
Bz 0 0 0.5 0.3

Table 24.1: Initial conditions of the MHD
variables for the Riemann problems.

α βx tfinal

0.5 0 0.8
1 0 0.4
1 0.4 0.16
2 0 0.2

Table 24.2: Background spacetime and �nal
time for di�erent Riemann problem runs.

�e tests considered in this section are considerably di�erent from those
discussed so far in that they do not involve smooth �ows and allow therefore
for the presence of nonlinear waves, either in the form of shocks or of steep
gradients as those present at the �uid interface with an atmosphere.

24.1 Riemann problems

We start by considering two standard Riemann (or shock-tube) problems,
here referred to respectively as RP1 and RP2, and originally proposed in
the context of special relativistic MHD by [50]. Although these tests are
solved on �at spatial hypersurfaces, i.e., γij = δij , they employ di�erent
setups for the gauge variables, the lapse function and the shi� vector. In
particular, Table 24.1 provides all the considered initial conditions for the
MHD variables of RP1 and RP2, while the lapse, the x-component of the
shi� and the �nal time are chosen as in Table 24.2. �e adiabatic index for
RP1 and RP2 has been set to be Γ = 2 and Γ = 5/3, respectively.

For these tests, the HLL approximate Riemann solver has been used. Fig-
ure 24.2 o�ers a 3D view of the rest-mass density variable for the proposed
shock-tube problems and the corresponding AMR grid and limiting status,
for the case α = 2, obtained with our ADER-DG-P3 scheme using a level-
zero mesh of 40 × 5 space-elements onto with `max = 2 maximum re�ne-
ment levels are added, and an ADER-DG-P5 scheme on a level-zero grid
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of 120 × 5 elements with one single re�nement level `max = 1. �e cor-
responding one-dimensional (1D) cuts relative to the P5 solutions are pre-
sented instead in Fig. 24.3 relatively to the test con�gurations listed in Table
24.1; shown with solid lines are the corresponding solutions from the exact
Riemann solver of [215]. In the presence of moving discontinuities, the ex-
pected order of convergence of any shock capturing method is at most one.
In Fig. 24.1 we show the results of a numerical convergence study for RP2,
indicating that the numerical method converges indeed with the expected
order of one for �ows with shocks and discontinuities.
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Figure 24.1: Convergence study against
Riemann problem RP2 of Table 24.1. L1

errors are plo�ed against the discretization
step ∆x = L/Nx, with L = 1 being
the length of the one-dimensional domain,
Nx the discretization number, i.e., the num-
ber of high-order space-elements in the x-
direction. Published in [194].

Overall, the results of these tests con�rm the high-resolution shock-
capturing capability, but also the robustness, of the new class of ADER-DG
PN schemes. In addition, they show that the a-posteriori �nite-volume sub-
grid limiter is activated only in very small portions of the domain and, in
the case of genuine shocks, it is very narrowly concentrated near the dis-
continuity.

Figure 24.2: 3D view of the rest-mass den-
sity, the corresponding AMR grid and, on
the horizontal plane, the corresponding
limiting status, obtained with our ADER-
DG PN with �nite-volume subcell limiting.
From the top panel to the bo�om, from le�
to right: i) RP1 at t�nal = 0.2 with α = 2,
P3, with a coarsest grid of 40×5 elements,
`max = 2; ii) RP1 at t�nal = 0.2 withα = 2,
P5, with a coarsest grid of 120 × 5 ele-
ments, `max = 1; iii) RP2 at t�nal = 0.275
with α = 2, P3, with a coarsest grid of
40 × 5 elements, `max = 2; iv) RP2 at
t�nal = 0.275 with α = 2, P5, with a
coarsest grid of 120×5 elements, `max = 1.
�e limited cells, using the subcell ADER-
TVD �nite-volume scheme, are highlighted
in red along the horizontal plane below the
3D plot of the rest-mass density ρ, while
unlimited DG-PN cells are highlighted in
blue. Published in [194].
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Figure 24.3: Riemann Problem 1 (RP1): the
di�erent panels show the various physical
variables interpolated along a 1D cut, start-
ing from a coarsest grid of 120 × 5 ele-
ments by using the ADER-DG-P5 scheme
supplemented with the a posteriori ADER-
TVD subcell and one single re�nement level
`max = 1. Shown with solid lines are the
corresponding solutions from an exact Rie-
mann solver. Published in [194].

24.2 Advection of a 2D magnetic field loop

In this special-relativistic 2D problem we advect a loop of magnetic �eld
which is at a magnetic pressure much smaller than the corresponding �uid
pressure. �e computational domain in Cartesian coordinates is given by
is (x, y) ∈ Ω = [−1,+1] × [−0.5, 0.5] with periodic boundary conditions
everywhere. Using unitary (dimensionless) rest-mass density and gas pres-
sure, i.e., ρ = p = 1, the velocity �eld is set to be constant with and ini-
tialised as (vx, vy) = (2, 1)V0, where V0 = 1/5. �e magnetic-�eld vector
is derived from the magnetic vector potential, which is speci�ed as

Az =

{
A0(R− r) for r ≤ R ,
0 otherwise ,

(24.1)

where r is the radial coordinate, R = 0.3 is the radius of the advected loop
and the parameter A0 = 10−3 modules the magnetic �eld. �e disconti-
nuity at the loop boundaries has been initially slightly smoothed, e.g., by
means of a standard linear smoothing in the form

Figure 24.4: Advected magnetic �eld
loop problem (SRMHD) obtained with the
ADER-DG-P4 scheme supplemented with
the a posteriori TVD subcell limiter. Color
encoded are, from top to bo�om: �e mag-
netic �eld magnitude | ~B|, the limiter status
and the divergence cleaning scalar ψ. Pub-
lished in [194].

Bx =





A0
y
r for r ≤ R ,

s(r)A0
y
r for R < r ≤ R1 ,

0 otherwise .
(24.2)

By =





−A0
x
r for r ≤ R ,

−s(r)A0
x
r for R < r ≤ R1 ,

0 otherwise .
(24.3)

where s(r) = 1 − (r − R)/(r − R1) is the adopted linear taper-function,
with R1 chosen to be close to R, e.g., R1 = 0.315.

Given the initial conditions and the periodic boundary conditions, the
magnetic loop is advected across the computational domain and we have
performed simulations using the lapse function set either to α = 1 or to
α = 2, so that the corresponding simulation times to recover the initial
con�guration are t = 5 and t = 2.5, respectively; conversely, the shi�
vector βi is set to zero.

�is test has been solved using a level-zero mesh of 202 space elements
with tho maximum re�nement levels `max = 2 via an ADER-DG-P4 scheme,
supplemented with the a posteriori TVD subcell limiter and by adopting an
HLL Riemann solver. At this point we would like to emphasize that instead
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Figure 24.5: Solution of the SRMHD blast
wave with Bx = 0.1 at time t = 4.0,
obtained with the ADER-DG P3 scheme
supplemented with the a posteriori second-
order TVD subcell limiter. �e three
columns show rest-mass density ρ, Lorentz
factor γ and magnetic pressure pmag. Pub-
lished in [194].

of HLL or Rusanov-type Riemann solvers any other stable and monotone
numerical �ux could have been used equally well. �e Riemann solver has
to be understood as a building block of the DG scheme, exactly in the same
way as it is in the �nite-volume context. Figure 24.4 reports the numeri-
cal results, which basically show the preservation of the initial condition.
Furthermore, the limiter is only rarely activated, as expected for this test
case, and the divergence cleaning �e solutions for the divergence cleaning
scalar ψ never reaches a larger absolute value then |ψ| ∼ 5× 10−6.

24.3 2D blast wave

Another standard test of the RMHD equations is represented by the cylin-
drical blast wave problem. In this benchmark, the plasma is initially at rest
and subject to a constant magnetic �eld along the x-direction; we have
therefore considered two di�erent con�gurations strengths of the magnetic
�eld, i.e., Bx = 0.1 and Bx = 0.5, representing the case of a moderately
and of a highly magnetized plasma, respectively.

�e initial conditions for the rest-mass density and pressure are given
respectively by

(ρ, p) =

{
(0.01, 1) if r < R ,

10−4 × (1, 5) otherwise ,
(24.4)

and together with the magnetic-�eld strength are su�cient to fully specify
the initial setup. Also in this case, and following see [52], a linear smoothing
is used in order to avoid sharp discontinuities in the initial conditions.

�e computations have been carried out in 2D with a Cartesian coor-
dinate system over a computational domain given by Ω = [−6, 6]2, with
402 elements on the coarsest mesh level, and a maximum re�nement level
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Figure 24.6: Solution of the SRMHD blast
wave with Bx = 0.5 at time t = 4.0,
obtained with the ADER-DG P3 scheme
supplemented with the a posteriori second-
order TVD subcell limiter. Top panels:
AMR grid, bo�om panels: limiter map with
troubled cells marked in red and regular un-
limited cells marked in green. Published in
[194].

`max = 2. We have used the Rusanov Riemann solver with our ADER-DG-
P3 scheme. �e computed results for di�erent physical quantities, the AMR
grid and the limiter status are shown in Fig. 24.6 for the highly magnetized
case. Note in the bo�om-right panels of �gures the map of the “troubled
cells” and how these are limited in extent and nicely map the dynamics of
the discontinuities in the magnetic �eld. Clearly, the fraction of troubled
cells in the case of the low-magnetisation setup represent only a very small
fraction of the evolved cells (see Fig. 24.6); this is to be contrasted with what
happens in the case of the much more challenging case of high magnetisa-
tion, where however the troubled cells still represent less than 50% of the
evolved cells (see Fig. 24.6).

Lacking an analytic solution to compare with, the assessment of the re-
sults in this case is harder, but it is reassuring that the results match well
those presented in other tests in the literature, e.g., by [154, 157, 468].

24.4 Orszag-Tang vortex

Our �nal special-relativistic test of non-smooth �ows is another classic bench-
mark represented by the relativistic version of the Orszag-Tang vortex sys-
tem [353]. �is is a useful application of our numerical infrastructure as
it involves the development of a complex and non-smooth magnetic-�eld
structure and hence it explores geometries without trivial symmetries.

�e initial conditions in this case are given by the vector of conserved
variables

(ρ, u, v, w, p,Bx, By, Bz) =

(
1,− 3

4
√

2
sin y ,

3

4
√

2
sinx , 0, 1,− sin y , sin 2x , 0

)
,
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with Γ = 4/3. �e computational domain is Ω = [0, 2π]2, with 302 el-
ements on the level-zero grid, a maximum re�nement level of `max = 2,
periodic boundary conditions and a Rusanov Riemann solver for the sub-
cell �nite-volume limiter.

Figure 24.7 shows the numerical results for the AMR grid with limiter
status, the rest-mass density and the divergence-cleaning scalar ψ at dif-
ferent times, together with the corresponding numerical solution obtained
with the same scheme on a �ne uniform 2702 mesh, corresponding to the
�nest mesh resolution at ` = `max and which serves here as a reference.
�e �gure, in particular, refers to simulations in which the P5-version of
our ADER-DG has been adopted. Also for this test, a rigorous accuracy
analysis is not trivial but we note the very good agreement between the
AMR simulations and the �ne uniform-grid reference solution, as well as
with the corresponding solutions that are published in [362, 468]. Note also
how the AMR grid structure and the troubled-cells pa�erns closely follow
the development of steeper gradients and discontinuities.

Figure 24.7: SRMHD Orszag-Tang vortex
problem at times t = 3 (upper row) and
t = 7 (lower row), obtained through the
ADER-DG-P5 scheme supplemented with
the a posteriori TVD subcell limiter on a 302

elements on the coarsest grid (` = 0), two
maximum re�nement levels and a re�ne-
ment factor R = 3. Color encoded, from
le� to right, are: Rest mass density ρ, AMR
grid and limiter status, divergence cleaning
scalar ψ. Published in [194]

25 Non-smooth general-relativistic benchmarks

In the following two sections we discuss the use of our ADER-DG method
in non-smooth general-relativistic �ows, either in 2D and spherical coordi-
nates or in 3D and Cartesian coordinates. �e tests involve the evolution
of non-selfgravitating tori as those presented in Sec. 24 with the impor-
tant di�erence that the computational domain here fully contains the torus,
whose exterior is therefore �lled with a uniform atmosphere at a rest-mass
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density of ρ0 = 10−9 that is �ve orders of magnitude smaller than the one
at the torus centre.

25.1 2D torus around a Schwarzschild black hole

First, we consider a thick torus in equilibrium orbiting around a black-hole
with the parameters previously described in Sec. 23.2 and using horizon-
penetrating spherical KS coordinates in 2D. �e computational domain (r, θ) ∈
Ω = [2, 18]× [0.5, 2.5] is discretized with a uniform mesh of 502 elements
using an ADER-DG-P3 scheme with TVD subcell �nite-volume limiter (as
a comparison, the torus has an inner radius rin = 5.5M and an outer radius
rout = 13.8M , so that the entire torus is resolved with only 26 elements
in radial direction and 14 elements in angular direction). On the outer edge
we impose the initial data as boundary condition in all variables.

A 1D cut of the rest-mass density in the radial direction is shown in the
le� panel of Fig. 25.1 and is plo�ed over the analytic solution at t = 100M .
Note the excellent agreement between the numerical results and the exact
solution, with di�erences in the central rest-mass density that are less than
0.7%.
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Figure 25.1: Radial 1D cut of the thick torus,
comparision of the ADER-DG P3 solution
with second-order TVD subcell limiter a�er
t = 100M compared with exact solution.
�e right panel shows di�erent azimuthal
angles.

It is useful to remark that the low-density atmosphere has been success-
fully simulated and robustly evolved in time with a high-order ADER-DG
scheme and that inside the computational domain the limiter is activated
only on the border of the torus, where spurious oscillations may generate
possibly negative-valued densities and pressures in the high-order DG poly-
nomials. However, the a-posteriori subcell �nite-volume limiter appears to
be robust enough to accurately treat the atmosphere of the torus. Further-
more, we note that the �uid in this low-density region is treated so as to
be evolved as a standard �uid, i.e., the velocity is not set to zero in a com-
putational cell that is marked to host the atmosphere. As a result, during
the simulations, the atmosphere the �uid in the atmosphere starts accreting
onto the black hole; in practice the amount of ma�er accreted in this man-
ner is minute and does not in�uence with the dynamics of the much denser
ma�er lost from the torus.

25.2 3D torus around a Schwarzschild black hole

In this section, a fully 3D evolution of the torus (from the previous section)
is considered, i.e., the azimuthal spatial dimension is added.

For this, we use a horizon-penetrating Cartesian KS coordinates which
cover a computational domain chosen to be (x, y, z) ∈ Ω = [−18,+18] ×
[2, 18] × [−8,+8]. �e portion of the domain around the origin is excised
following the same logic discussed in sec. 23.3. �e solution has been
computed using an ADER-DG-P3 scheme on a uniform mesh composed of
40× 20× 20 elements.

�e 1D cut of the rest-mass density pro�le on the equatorial plane θ =

π/2 and along di�erent angular directions φ = π/4, π/2 and 3π/4 at
t ∼ 30M . �e various numerical solutions are overlayed with the cor-
responding analytic solutions in the right panel of Fig. 25.1. Once again, we
can observe an excellent agreement between numerical and exact solution,
with di�erences in the central rest-mass density that are less than 1.5%.
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ror (le� panel), vs. power density spectrum
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predicted by perturbation theory marked in
red. �e �gure shows two codes compared
to each other. �e be�er the peaks are re-
produced, the be�er the code performs in
this test.

25.3 Preliminary results on a TOV star

�e Tolman-Oppenheimer-Volko� (TOV) solution of general relativity is a
popular choice for modelling neutron stars. It is a spherically symmetric
static spacetime of an isotropic �uid in equilibrium. For such an energy
momentum tensor, Einstein equations reduce to the TOV equations [352,
440]

dp

dr
= −ρm(r)

r2

(
1 +

p

ρ

)(
1 +

4πr3 p

m(r)

)(
1− 2

r

)−1

(25.1)

wherem(r) =
∫ r

0
4πr̃2ρdr̃ is the total mass within a shell of radius r. TOV

equations can be solved numerically, i.e., solve the system in favour of a
requested total mass M = limr→∞m(r) or a requested central hydrody-
namic quantity such as the central density ρ0. However, the full arsenal of
GR approximations (Section 10) can be applied to TOV equations, such as
Post-Newtonian approximations.

In this test, we created initial data for a 1.45M� neutron star with radius
R = 5.84M� = 8.6km in isotropic coordinates and central rest mass den-
sity ρc = 1.28 × 10−3M4

� = 4.9 × 1018kg/m3, described by a polytropic
EOS with Γ = 2,K = 100 (in geometric units). �e initial can be solved
with an arbitrary numeric TOVSolver 23 . �e star is evolved in full 3D on 23 See Appendix B3 for a list of ODE solver

codes which where used within this text.a domain with an extend of at least Ω = [−10M�, 10M�]3 with out�ow
(copy) boundary conditions on all boundaries.

While the interpolation of the initial data on the evolution grid always
adds a li�le perturbation, an additional well-de�ned “physical” perturbation
should be added which produces deterministic results in a code comparison.

Our �ndings are presented in Figure 25.2. Here, we compare a 1% pres-
sure perturbation evolved with WhiskyTHC [369, 377], i.e., a �nite di�erenc-
ing code, vs. the ADER-DG code, but with arti�cial viscosity turned on. One
can clearly see that the arti�cial viscosity, which shall avoid the activation
of the limiter at the surface, damps all errors, arti�cially stabilizes the sim-
ulation but removes the physical modes (vibrations) which characterize the
star.
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26 Summary

In the present Chapter III, the equations of general relativistic magneto-
hydrodynamics (GRMHD) have been reviewed and casted in a form with
conserved and nonconserved �uxes. In a couple of static spacetime bench-
mark scenarios, their correct implementation with a sophisticated ADER-
DG scheme, presented in section 6, is demonstrated. Preliminary results on
astrophysically interesting scenarios, such as the TOV star, were given.
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chapter

IVGeneral-relativistic measurement of the treshold mass to
prompt collapse

In this chapter, the lifetimes of the remnant produced by the merger of two
neutron stars is studied. By determining a maximum mass at which a binary
neutron star system collapses immediately to a black hole, constraints on
neutron star masses as well as a lower limit on their radii can be given. �is
chapter relies partially on the coauthored publication [274]. An introduc-
tion into the problem and a review of previous work given in Section 0.4 on
page 15. As a motivation, the physical content of the tested nuclear equa-
tions of state are revisited.

27 Motivation: Nuclear equation of state

In order to describe neutron stars with the coupled Einstein-Euler equations
(Chapters II and III), a suitable (realistic) equation of state must be cho-
sen which encodes all microscopic phenomenology (Section 18). �e equa-
tion of state depends on thermodynamic/hydrodynamic quantities such as
(rest mass) ma�er (baryon) density ρ, internal energy ε and temperature
T . One of the common approximations made (in high energy physics in
general) is to ignore thermal e�ects, assuming a “cold” EOS in the limit of
T = 0. In fact, these EOSs can be used in the inspiral phase of binary
neutron stars (where the two stars are approximatively still “cold”), but af-
ter merger, when the temperatures of the merged objects reaches values of
several tens of MeV, the approximation breaks down. To counter this, it is
not uncommon [69, 427] to model the post-merger dynamics by modifying
zero-temperature EOS and modelling thermal e�ects in terms of a “ther-
mal contribution” via an ideal-�uid EOS [385] that accounts for the shock
heating [255]. �is approach is not self-consistent but robust and the use of
thereby de�ned “hybrid EOSs” has been employed extensively in the liter-
ature [43].

In contrast, “hot” equations of state to try model nuclear ma�er with
taking temperature into account. A couple of examples shall be given which
are relevant in this chapter.

�e La�imer-Swesty (LS) EOS [292] is a popular EOS in both core-collapse
supernovae and binary merger simulations which models the nucleous as a
�nite-temperature compressible liquid droplet with Skyrme nuclear pseudo-
potential [295, 297]. For heavy nuclei, the single nucleus approximation
(SNA) is adopted. �e number 220 in LS220 refers to the chosen nuclear
incompressibility K0 = 220MeV.
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TM1 is the name of a popular EOS which name refers to a particular
parametrization used in the employed relavistic mean �eld (RMF) theory,
formulated in [423] who added a nonlinear σ model to describe nuclear
ma�er with relativistic Hartree approximation. TM1 was �rst used in [297,
448] with a �omas-Fermi distribution for temperature e�ects. Hempel and
Scha�ner-Bielich adopted a nuclear statistical equilibrium (NSE) model and
a di�erent RMF parametrization for the TM1 EOS, leading to the modi�ed
HS-TM1 EOS [239, 240] which is used in place of the original one in this
text.

DD [447] presents another RMF model with adopts density dependent
(DD) meson-nucleon coupling. DD2 has an improved experimental nucleon
mass, introduced by [448]. As with TM1, there is the HS-DD2 variant [239]
which is adopted in this text.

EoS ρ0/ρnuc

BHB-LP 8.0
DD2 7.2
LS220 9.4
SFHo 9.8
TM1 6.7
Togashi 7.4

Table 27.1: Central energy density ρ0 of the
maximum nonrotating mass star, in units of
the nuclear saturation density ρnuc = 2.7×
1011kg/m3 for the EOS discussed in sec-
tion 27. See table 30.1 for further properies.

�e Steiner-Fischer-Hempel (SFH) EOS [420] employs a non-linear Wal-
ecka model (nucleon mean-�eld interaction via σ, ω and ρ mesons) with
some covariant interactions added to the Lagrangian. �e SFHo model is
��ed to observations from [421].

�e Banik-Hempel-Bandyopadhyay (BHB) EOS [55] uses the DD2 RMF
parameter set for nucleons, the HS NSE model for light and heavy nuclei and
includes strangeness (only the Λ0 = uds hyperon and the φ ≈ ss̄meson for
hyperon-hyperon interaction, hence the name BHB-ΛΦ) and a �rst-order
phase transition between the baryonic phase and the quark phase, i.e., the
quark-gluon plasma.

�e Togashi EOS [438, 439] includes Λ and Σ hyperons and is obtained
with cluster variational methods.

In fact, SFHo, TM1, DD2 and BHB-ΛΦ are ruled out by observations [371],
while LS220 was ruled out already earlier by unitary-gas considerations/-
constraints of chiral perturbation theory [434], leaving Togashi alone as
not-yet-ruled-out in the ba�ery of presented EOS.

28 Methods
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Figure 28.1: Cartoon of the distance mea-
sure for merger time determination: Orbits
of a BHBΛΦ M = 1.55M� binary in the
equitorial plane. �e shaded circles in the
background indicate the TOV radii R =
8.78km. �e distance d = 2R is displayed
in black. Interestingly, the orbits also ex-
hibit large eccentricity since they overlap.

We have numerically solved Einsteins equations in the BSSNOK formu-
lation (Section 12), fully coupled to the relativistic Euler equations (Sec-
tion 20). We used the Einstein Toolkit [190, 306, 473] to solve these cou-
pled partial di�erential equations at the same time with Method of Lines
and a strong stability preserving RK3 method (Section 4.1). �e same tech-
niques were employed in a number of other works [95, 231].

We evolved spacetime with the McLachlan code [63, 64, 100, 381, 411],
which employs 4th order �nite di�erencing with arti�cial dissipation added.
�e lapse was evolved with 1 + log slicing and the shi� with the Gamma
driver.

In contrast, we evolved ma�er with the WhiskyTHC code [373, 375, 376].
Here, we employed a 4th order �nite volume scheme with LLF �ux split-
ting, HLLE Riemann solver [235], MP5 reconstruction operator [424] and
positivity-preserving limiter [249].

�e three dimensional Cartesian grid was managed by the Carpet code
[220, 401, 403] which provided mesh re�nement to evolve both the merger
as well as the wave zone. We adopted six �xed mesh re�nement levels and
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cubic cells h = ∆x = ∆y = ∆z. �e �nest resolution within a given
simulation is h = 0.15M� ∼ 0.215km if not denoted otherwise. �e outer
boundary of the domain extends to at least 500M� ∼ 700km. For the
outer boundary conditions, radiative boundary conditions (Appendix A5)
were used.

29 Definition of merger and collapse time
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Figure 29.1: Cartoon for demonstrating
the de�nition and extraction of the sur-
vival time of a merger remnant. �e red
line compares the merger time determina-
tion in three di�erent ways, from top to
bo�om: Seperation d, Gravitational wave
strain (polarization h+ dashed, envelope h
solid), global lapse α minimum. �e green
line shows the merger time, indicated by
the lapse.
�is example shows an equal mass binary
M = 1.55MTOV for the BHB-ΛΦ equa-
tion of state.

In order to do a quantitative study, a number of time measures and their
determination shall be introduced. We de�ne the survival time T = tc −
tm of a merger product as the timespan between the merger event tm and
the collapse to a black hole tc. �e individual times tc, tm are measured in
coordinate (simulation) time, i.e., their clocks start when the initial data are
evolved. Clearly, there is no unique de�nition of the collapse and merger,
which determine tc and tm. In the following, a couple of di�erent de�nitions
are reviewed.

29.1 Definition of merger time

For the de�nition of the binary merger (time tm), we examined either the
gravitational wave (GW) signal, the proper separation of the binary neu-
tron stars or a decreasing treshold value of the global minimum of the lapse
function (indicating a characteristic maximum strength of the gravitational
potential). We do not �nd the peak of the global maximum (Linf integral) of
the rest mass density a good measure for the merger time.

In our simulation, we derive the complex Weyl scalar Ψ4 from the Rie-
mann tensor (see Appendix A6 for grativational wave extraction) on a spher-
ical surface at a large seperation (typically 300M� or 500M�). �e magni-
tude |Ψ4|2 can serve as a protoypic gravitational wave signal. However,
one can also proceed to integrate the strain h+ and h− and de�ne the
merger time tc by the maximum of the actual gravitational wave strain
h = (h2

+ + h2
−)1/2 [427]. While we found subtle di�erences between the

peak of the gravitational wave strain and the magnitude of the Weyl scalar
Ψ4, for many EOSs it is ∆tc �M�.

�e neutron star positions can be determined by tracking the two (New-
tonian) center of masses ~ri during the evolution (Figure 28.1). �e sepera-
tion d = |~r1−~r2| can be measured in the local coordinate frame. �e merger
time can be de�ned as the �rst time when d < 2R with R the radius of the
individual TOV stars. 1 1 It can be useful to introduce a dimen-

sionless scale factor a to adopt for the tidal
deformation in the late inspiral, thus de�n-
ing merger time when d = 2aR. �e value
of a could be derived emperically, a typical
value is a = 0.8.

29.2 The lapse as indicator

For the de�nition of the back hole formation (time tc), we decided to use
the global minimum of the dimensionless lapse α. �anks to the singularity
avoiding Bona-Masso slicing conditions [46, 117], the minimum of the lapse
can serve as an indicator for the curvature of the spacetime. Furthermore,
this quantity has been shown to be a very good proxy for the tracking and
appearance of an apparent horizon [7]. 2 2 We also evaluated numerical apparent

horizon �nders [28, 402]. However, they
seriously slow down the time e�ciency of
the code. In Cactus, it is a�ordable to
determine �eld reductions every ∆Tr ∼
20M . 0.1ms, whereas the horizon �nder
is only computed every ∆Th ∼ 150M ∼
0.75ms. �erefore there is a need for the
high time resolution proxy of the appear-
ance an apparent horizon.

�e simplest criterion which can be derived from min(α) is a treshold
value αmerged in order to de�ne tm as soon as min(α) < αmerged for the



binary neutron star lifetimes 98

�rst time. In addition, one can adopt the lapse function α for not only
de�ning the collapse time tc but also the merger time tm. Following the
same argument as above, the merger time tm can be de�ned as soon as
min(α) < αcollapsed for the �rst time.

�e evolution of the minimum of the lapse has particular features which
are recognisable in Figure 29.1: �ere is a sudden dropo� at merger time
and a change in the slope around collapse time. Figure 29.2 illustrates this
by showing also the �rst and second time derivative of min(α) for a ref-
erence run. In all our simulations we observe that slightly before merger,
the second derivative drops and has a minimum at GW peak. Similarly, at
collapse the �rst derivative has a minimum. �ese features are not robust,
but serve as a motivation for the treshold values

αcollapsed = 0.35 and αmerged = 0.2 . (29.1)

Considering the de�niton of the merger time tm, we conclude that all
presented methods (GW strain, coordinate distance, falling below a mini-
mal lapse) are equally suited for de�ning the start of the merger and provide
similar times within a small error in time. Within this chapter, we concen-
trate on using exclusively the lapse because it turned out to be most robust.
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Figure 29.2: Time evolution in a refer-
ence binary system around merger time.
�e three panels show the lapse minimum
min(α), its �rst and second time deriva-
tive. �e time is measured since merger (de-
�ned by GW peak), i.e., tm = 0 in this
units. �e green line indicates merger by
∂3
t minα = 0. �e red line indicates col-

lapse by ∂2
t minα = 0 at t ∼ 3.5ms.

29.3 The free fall timescale

�ite generically, one expects that the lifetime T of an hypermassive neu-
tron star (HMNS) will decrease as the mass of the system is increased. In
order to allow comparable times T for di�erent EOSs, the collapse time T
is considered as a dimensionless quantity by expressing it in terms of the
ma�er free-fall time τff , i.e., [385]

τff =
π

2

√
R3

2M
, (29.2)

for an object of mass M and radius R. As only equal mass binaries are
considered, M is the mass of a single star and R its radius. �e small-
est free-fall time will be archieved for the maximum-mass model (since
R ∼ 1/M ). �erefore, the shortest free-fall timescale is set to be with
τTOV := τff(MTOV, RTOV). Hence, we de�ne the threshold mass Mth as
the one for which the merger remnant will collapse over such a timescale,
i.e., M/MTOV → Mth/MTOV for T/τTOV → 1. Any survival time T <

τTOV is classi�ed as a prompt collapse to a black hole.

29.4 Angular momentum

Our approach is to evolve a series of BNS initial data for di�erent system
masses for a given equation of state (Figure 30.1 shows an open circle for
each simulation run). We found that nearby masses might not be compa-
rable because the individual BNS systems do a di�erent number of orbits,
resulting in a substaintially di�erent amount of angular momentum present
at the merger time. In order to investigate the e�ect of the angular momen-
tum, we also performed headon collisions with no angular momentum (only
linear momentum, i.e. a boost of v = 0.1c). In such a case, we observed all
systems to collapse promptly at any given mass. We conclude that angular
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Figure 30.1: Properties of TOV sequences:
Radius R, dimensionless tidal love num-
ber k2, tidal deformability Λ and free fall
timescale τ as functions of the star mass
M . �e maximum massesMTOV and their
relevant quantities RTOV , κTOV , ΛTOV

and τTOV are displayed with fulled circles.
Open circles refer to models used as initial
data. First panel published in [274].

momentum is (1). crucial to yield a �nite survival time T > 0 and thus
initial data in quasi-circular orbits are required and (2.) the �nal angular
momentum has to be comparable between di�erent binary masses in order
to have a well-de�ned collapse time.

30 Initial data and EOS

We model the neutron stars with realistic tabulated hot equations of states
which are freely available at stellarCollapse.org. We compute equilibrium
solutions of the Tolman-Oppenheimer-Volko� equations (TOV) with the
PizzaTOV code [262] and its successor MargheritaTOV [333]. If not men-
tioned otherwise, initial data for the time evolution (ie. binary neutron
star initial data) are computed under the assumption of irrotational quasi-
circular equilibrium with Lorene [92, 151, 221]. �e initial separation is
45km, so that the binaries perform around �ve orbits before the merger. We
note that since the threshold mass for equal-mass binaries is always larger
than for unequal-mass binaries, i.e., Mth(q = 1) > Mth(q < 1), the use of
equal-mass binaries is not a restriction but optimises the search forMth [70].

30.1 Nuclear equations of state taken into account

Since the overall goal is that of determining as accurately as possible the
threshold mass to prompt gravitational collapse, it is essential that the de-
scription of the thermal e�ects in the ma�er is as realistic and self-consistent
as possible. In turn, this forces us to consider EOSs that have a physi-
cally consistent dependence on temperature (Section 27). Unfortunately,
the number of EOSs that can be employed for this scope and that do not vi-
olate some basic nuclear-physics requirement (as it is the case for the widely
employed LS220 EOS [297, 434]), is much more restricted.

Table 30.1: Various TOV properties of
the equations of states taken into account.
�ese are the maximum mass of a nonro-
tating star MTOV , its radius RTOV , its
compactness CTOV = MTOV/RTOV ,
its tidal Love number κ2,TOV , its derived
tidal deformability ΛTOV , and its free-fall
timescale τTOV . Furthermore, the litera-
ture which introduces the particular EOS is
given for completeness in the last column.
See also Table 27.1 for the central density
ρc of the maximum nonrotating mass con-
�guration.

EoS MTOV[M�] RTOV[km] CTOV Mb,TOV[M�] κ2,TOV ΛTOV τTOV[µs] Literature

BHB-ΛΦ 2.10 11.64 0.26 2.74 0.020 13.50 83.31 [55]
DD2 2.42 11.94 0.30 3.28 0.020 5.52 80.60 [79, 240]
LS220 2.04 10.68 0.29 2.79 0.014 7.65 74.22 [292]
SFHo 2.06 10.34 0.29 2.79 0.019 5.81 70.44 [406]
TM1 2.22 12.60 0.26 2.86 0.029 16.60 91.70 [297, 448]
Togashi 2.23 10.17 0.32 3.13 0.014 2.65 66.12 [438, 439]

http://stellarCollapse.org
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Figure 31.1: �e sca�er plot of measured
survival (collapse) times T , here denoted
as tcoll ≡ T for the di�erent EOS (cir-
cles). �e solid line represents a Gaussian
�t. Stars represent the extrapolated tresh-
old mass Mth, predicted by the �t. All sur-
vival times tcoll < τTOV are considered as
prompt collapse. Figure published in [274].

Notwithstanding this limitation, we have employed here all of the (�ve)
“hot” EOSs that have been proposed recently and whose properties are re-
ported in Table 30.1 when expressed in terms of the masses and radii of
the maximum-mass of the nonrotating con�guration (herea�er indicated as
TOV). Similarly, Fig. 30.1, provides a graphical representation of the masses
and radii of the corresponding TOV equilibrium solutions, both stable (solid
lines) and unstable (dashed lines). �e solid circles mark the maximum-mass
solutions, while the open circles refer to models used as initial data (see be-
low).

We recognize the maxima of each TOV properties to serve as character-
istic values for the particular equation of state. �ese values can be used
to normalize all properties of any ma�er distribution described with the
equation of state 3 Especially for the free-fall timescale τ , which serves 3 �e TOV approximation can be fur-

ther motivated by the fact that the irrota-
tional stars within the binary share univer-
sal properties with their TOV counterparts.
�at is, the authors of [98] have shown that
the maximum mass of a rotating neutron
star can brought into a simple relationship
to the non-rotating solution, Mmax,rot ≈
1.203MTOV , and therefore it is su�cient
to discuss non-rotating stars only in this
section.

for normalization in the next sections, there is a large discrepancy between
τTOV and the numbers in the relevant regime, which is up to a factor two.
However, we performed the whole analysis with both a dynamical τ(M) as
well as a �xed τ(MTOV) and �nd only a minimal di�erence ∆T �M�.

31 Results on the treshold mass

In order to calculate the threshold mass of a given EOS, over 200 simulations
were run for system masses with a short, but �nite, collapse time. From
these runs, only 15 suitable runs were selected for the analysis which had
survival times T < 1.0ms.

Figure 31.1 reports the survival times T normalised to the free-fall time-
scale of the maximum mass models τTOV for the individual EOS. �ese
times then are shown as a function of the initial mass M of the binary
system normalized to the EOS maximum mass. �e adoption of such set
of dimensionless quantities has the goal of revealing a universal behaviour
in the treshold mass, if one is present [98, 455, 462].

�e coordinates of �lled circles of di�erent colors in Fig. 31.1 are given
by the system masses (initial data) and their read-o� lifetime (a�er evo-
lution). For the Tagoshi+ EOS we only report two values and that these
di�er by only 3.7% in mass (i.e., M = 1.440M� and M = 1.435M�);
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any other binary with a slightly smaller mass (e.g., M = 1.430M�) leads
to a hypermassive neutron star that is e�ectively stable over the timescales
investigated here (i.e., up to 1-10τTOV). Finally, since tcoll should diverge
for vanishingly small values of M , we �t the numerical data with a simple
exponentially decaying function of the type

EoS Mth ∆Mth

BHB-LP 1.503 0.005
DD2 1.364 0.020
SFHo 1.391 0.016
TM1 1.520 0.015
Togashi 1.298 0.000

Table 31.1: Results for the threshold mass,
including uncertainties. �e masses are
given in units of MTOV . Errors are dis-
cussed in Section 33.

M/MTOV = ã exp[−b̃(tcoll/τTOV)2] . (31.1)

�e behaviour reported in Fig. 31.1 reveals that a a universal behaviour
is present only very approximately and that the threshold mass, averaged
over all EOSs, is roughly given by

Mth

MTOV
≈ 1.415 , (31.2)

with a statistical error of ∆Mth = 0.05M�, i.e., with a variance of about
4% (see Table 31.1 for the individual values). When comparing with a linear
approximation, as it was done in [68],

M/MTOV = ã+ b̃(tcoll/τTOV) , (31.3)

we �nd it yields a systematic overestimate of the treshold mass (Figure 31.2).
When considering which of the functional behaviours, (31.1) vs. (31.3), �ts
the data best, the statistics do not provide a distinction criterion due to the
small number of points. 4 More importantly, we believe it is not reasonable 4 �e reduced χ2 are 0.0055 for the linear

�t and slightly be�er, 0.0089, for the non-
linear �t.

to expect that near the free-fall limit the behaviour should be a linear one.
Such a limit, in fact, should be thought as a regime where only in�nitesi-
mal changes in the mass should lead to a prompt collapse, exactly because
the merged object is very close to a stability limit. Such a behaviour, which
is seen frequently in critical-collapse calculations (see e.g., [228] for a re-
view), necessarily requires that the function M/MTOV should have van-
ishing derivative in the limit tcoll/τTOV → 1. Clearly, the nonlinear ��ing
(31.1) re�ects this behaviour while a linear one (31.3) does not.

Predicting the treshold mass from the TOV compactness

�e existence of a relation between the threshold mass and the correspond-
ing maximum mass has been suggested initially by [68], who, by employing
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showing the linear extrapolation to the crit-
ical mass as a dashed line, as done in [68].
In all cases, the extrapolation values for the
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systematically larger then in the exponen-
tial model (see main text).
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treshold mass with the stars matching the
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the non-linear �t 31.8 while the red dashed
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[274].

a smooth-particle approximation for the hydrodynamics and a conformally
�at approximation to general relativity, conclude the linear relationship

Mth/MTOV = â CTOV + b̂ (31.4)

with CTOV := MTOV/RTOV the maximum compactness. �e universal
ansatz proposed by [68] is thatMth/MTOV is independent of the EOS, with

â = 3.38, b̂ = 2.43 . (31.5)

Such a linear ansatz does represent a reasonable �rst approximation to
the data. However, it clearly overestimates the threshold mass in the limit
CTOV → 0, as we would assume

Mth/MTOV → 2 for CTOV → 0 . (31.6)

�is limit physically represents an in�nitely extended self-gravitating ob-
ject. 5 We do not impose this limit on the ��ing function. However, it is 5 Loosely speaking, the limit CTOV →

0 is also a classical one, as one moves
from relativistic self-gravitating con�gura-
tions over to Newtonian ones.

interesting (and revealing) that the data and the ��ing function naturally
provides this limit (31.6): For CTOV → 0 the merged system would need to
be nonorotating and hence with a threshold mass that is exactly twice the
TOV mass.

Furthermore, and more importantly, the linear relationship (31.4) does
not provide the expected black hole limit, which predicts that

Mth/MTOV → 0 for CTOV → 1/2 . (31.7)

�is constraint requires some clari�cation. For neutron stars, the tresh-
old mass Mth must be larger then the TOV mass MTOV, as the la�er is
the limit for stability to collapse. However, neutron stars make only a part
of Figure 31.3, shaded in light green, i.e., the most likely range of possible
values of CTOV for stable neutron stars, with the lower limit CTOV & 0.2

being deduced from a large statistical sample of possible EOSs [334], while
the upper limit CTOV . 0.35 is set by the limit on causality [279, 296].
It is useful to consider the Buchdahl theorem [385], which states that any
self-gravitating object whose compactness is larger than CB = 4/9 cannot
be in equilibrium and must collapse to a black hole. �e theorem, which
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is valid for any EOS, does not specify what is the mass of the object nor
what is the corresponding TOV mass. All that is required to produce a col-
lapse for such ultra-compact con�gurations is to reach such a compactness.
Hence, it is possible to construct a self-gravitating object with �nite mass
whose compactness is only in�nitesimally smaller than CB and then add
the (in�nitesimal) amount of mass that would lead the compactness to ex-
ceed CB . �is object would collapse promptly even if its mass is not large at
all. Taking this line of argument to the limit, the threshold mass will have
to go to zero when a black hole is already formed, i.e., for C → 1/2. �e
(extended) regime of extremely compact objects (ECOs) is shaded in dark
green in Figure 31.3.

Hence, we correct the linear approximation via a nonlinear �t of the type

Mth

MTOV
= a− b

1− c CTOV
, (31.8)

where a, b, c are to be determined from the data. However, imposing the ful-
�lment of the black hole constraint limit (31.7) removes one free parameter
and sets a = 2b/(2− c).

Figure 31.3 reports in blue the �t of Eq. (31.8) with

b = 1.01, c = 1.34 , (31.9)

against the numerical-relativity data shown with stars of the same colors
as in Fig. 31.1. 6 Also shown with a red-dashed line is the linear approx- 6 See Table 31.1 for errors in the �t. We

also made a linear �t (31.4) to our data (not
shown). Considering the quality of the �t
with the χ2 test, e.g., for DD2 we �nd for
the linear �t a χ2 = 1.4 × 10−5 while
the nonlinear �t has χ2 = 1.1 × 10−5.
Given the small number of data points (as
in Section 31), the χ2 for the nonlinear
�t is slightly be�er, but the statistics do
not provide a su�cient distinction criterion
(in contrast to the proposed physical ar-
guments). Naturally, the linear model of
Bauswein can be understood as the �rst
term in a series expansion the nonlinear
model (31.8). It is also qualitatively obvi-
ous from Figure 31.3 that the linear result
of [70] is a tangent to our curve.

imation of [70], which clearly suggests larger treshold masses. We believe
this result is a consequence of our fully general-relativistic approach, which
properly accounts for the strong-curvature highly dynamical behaviour that
characterizes the threshold to black hole collapse and that are probably un-
derestimated in the conformally �at approximation of [68]. At the same
time, the di�erence with the linear approximation of [70] is small (8% at
most for the EOS considered here).

32 Constraining Neutron Star radii

�e nonlinear expression (31.8) can be used to provide more stringent (larger)
lower limits on the radii of possible stellar models in the light of the recent
detection of the event GW170817 [435]. In particular, following [70], our
treshold mass model (31.8) can be used to constrain neutron star radii. To
do so, we write (31.8) formally as

Mth(M,R) =

(
a− b

[
1− c

(
M

R

) ]−1
)
M (32.1)

and then plot Mth(M) for di�erent R in Figure 32.1 (black lines). Also re-
ported in Fig. 32.1 with a gray-shaded area is the limit set by causality and
that requires MTOV/RTOV . 0.354 [279, 296].

As noted by [70], given a measurement of a binary neutron-star merger
with a given total massMtot, and assuming that the merger product has col-
lapsed to a black hole, it is possible to set a lower limit on Mth and, in turn,
a lower limit (although not very stringent) on RTOV. �is is shown graph-
ically in the le� panel Fig. 32.1, where we report with a horizontal blue-
dashed line and the total gravitational mass estimated for GW170817 [435],
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Figure 32.1: �e lower bound on RTOV

(red) using the universal relation Eq. (31.8).
�e horizontal dashed blue line represents
the observed mass of GW170817. �e red
shared area shows the values excluded by
the detection. �e grey shaded area repre-
sents values excluded by the causality con-
straint. Figure published in [274].

Mtot = 2.74+0.04
−0.01M� . (32.2)

�e corresponding uncertainty band (blue-shaded area) gives a lower con-
straint on Mth, since GW170817 did not lead to a prompt collapse.

�e blue band thus cuts (“constrains”) the red shaded area from below.
Especially it gives us an estimate of a neutron star minimal radius,RTOV ≥
9.74+0.14

−0.04 km (red solid line); this is to be contrasted with the value deduced
by [70], i.e., RTOV ≥ 9.26+0.17

−0.03 km, on the basis of their linear approxima-
tion. Interestingly, in order to obtain a similar stringent constraint derived
here, the authors of [70] require a hypothetical detection of a binary with a
comparatively larger mass Mtot ' 2.9M�.

All of the procedure followed so far to derive the nonlinear �t (31.8) for
CTOV can be repeated for an the compactness of a �xed massMx, i.e., Cx :=

Mx/Rx, thus allowing us to set constraints not only on RTOV, but on any
radiusRx within a reasonable range. �e result of this series of �ts is shown
in Fig. 32.2, where the values ofMx andRx are indicated with a blue crosses.
Also reported in black is the quadratic �t

Rx = −0.88M2 + 2.66M + 8.91 . (32.3)

�e importance of (32.3) is that it now o�ers a very simple and handy

10.0 10.2 10.4 10.6 10.8 11.0 11.2
Rx [km]

1.2

1.4

1.6

1.8

2.0

M
[M
�

]

Bauswein + 2017

Figure 32.2: Universal relation (black) for
the lower limit on Rx for a given mass M
(blue crossed); the red arrow is the con-
straint from [70] for a 1.6M� star. Figure
published in [274].
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Figure 33.1: Convergence plots on the col-
lapse times and the determined critical
masses for an exemplaric system and equa-
tion of state. �e colors of the dots repre-
sent the di�erent resolutions.

expression for the lower limit of stellar models as deduced from GW170817.
A similar procedure has been followed also by [70], but only for a �xed
mass of 1.6M�, and it was deduced that R1.6 ≥ 10.30 km; this result
should be contrasted with the the value derived from (32.3), which is in-
stead R1.6 ≥ 10.90 km. Similarly, for a reference star of 1.4M� we obtain
R1.4 ≥ 10.92 km, which is close to the estimate by [70] for 1.6M� 7 . Our 7 In [70], an estimate is only provided for

R1.6.R1.4 estimate is in good agreement with those made by [334], who have
expoited a statistical exploration of possible EOSs and building a set of one
billion stellar models, i.e., 12.00 < R1.4/km < 13.45.

33 Convergence and error budget

For a typical equation of state (SFHo), we made a convergence study with
di�erent resolutions of ∆x=215, 287 and 573m (∆x/M� = 0.15, 0.20, 0.40).
Figure 33.1 shows the variation of the collapse time and treshold mass as a
function of resolution. �e linear continuum extrapolation clearly shows
the �rst order convergence of the results.

Concerning the error budget, systematic errors are introduced by the
time resolution of the repeated output of �eld integrals and derived quan-
tities. For instance, for e�ciency we determine �eld reductions only every
128 timesteps (∆T ∼ 20M . 0.1ms). �is read-o� error goes into the
threshold mass determination. However, since a two-parametric function
is ��ed to two to three data points (Fig. 31.1), there is virtually no statistical
read-o� error of the threshold mass (as demonstrated by Table 31.1). �ese
negligible errors are at the order of ∆Mth ∼ 0.05M�, i.e., at the order of
1%. �ese errors go into the universal relations plot (Fig. 31.3) where again
a two-parametric function is ��ed to �ve data points, resulting again in an
inconclusive error budget of ∼1%. �e 5% deviation from [70] is obviously
a systematic consequence of the overall technique and not part of statistical
errors. �erefore, the radius constraining plot (Fig. 32.1) has no signi�cant
errors coming from the model (31.8) and the error given on the radius con-
straint is dominated by the observational error from GW170817.

34 Summary

In Chapter IV, a large number of general relativistic simulations of binary
neutron star mergers has been carried out in order to investigate the open
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question about the mass leading to a prompt collapse; which again is infor-
mative on the material neutron stars could be made of (i.e., the nuclear equa-
tion of state). Using a fully general-relativistic approach and a novel method
for the determination of the threshold mass, we have carried out simulations
making use of all of the realistic EOSs available to describe this process. In
this way, we have found a nonlinear universal relation for the threshold
mass as a function of the maximum compactness and which is potentially
valid for all compactnesses. At least for the temperature-dependent EOSs
considered here, this universal relation improves the linear relation found
recently with methods that are less accurate, but that also yield quantita-
tively similar results. Furthermore, exploiting the detection of GW170817,
we have used the universal relation to set lower limits on the stellar radii
for any any mass.
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Models for Quantum Black Holes

chapter

VGeneralized Uncertainty Principle and Black Holes in Higher
Dimensional Self Complete Gravity

�is chapter summarizes e�orts in modeling black hole solutions in a �rst
order quantum gravity theory. �is phenomenological model is obtained by
adding momentum-dependent terms to Heisenbergs uncertainty principle,
resulting in a certain f(R) gravity modi�cation which is subsequently stud-
ied in its geometric and thermodynamics properties. For an interoduction
into the problem and a review of previous work, see Section 0.2 on page 13.
As a motivation, this chapter starts with higher dimensional spacetime. �is
chapter is based on parts of [288] as well as the upcoming publication [275].

35 Motivation: Higher dimensional Black Hole spacetimes

Higher dimensional black hole solutions play an important role in theo-
retical research for an array of reasons. On the more formal side, they
are a key element of proposals aiming to a uni�ed description of funda-
mental interactions, e.g., Superstring theory and related paradigms, like the
gauge/gravity duality. On the more phenomenological side, microscopic
higher dimensional black holes would be the “smoking gun” for the teras-
cale quantum gravity [56, 156, 216] and a viable resolution of the hierarchy
problem [32, 33, 35, 36, 378, 379].

g

g

g

g

g

SM

SM

4−dim spacetime

Figure 35.1: Cartoon of the 4-dimensional
spacetime (brane), where standard model
(SM) particles are allowed to propagate
on, while gravitational degrees of freedom
(i.e., gravitons, g) can propagate in the ex-
tra dimensions. �e ball shall indicate the
extension of the hyper-spherical black hole.
Modi�ed from [132].

Rc
rH

Figure 35.2: Embedding of a black hole with
rH � Rc, where Rc is the compacti�ca-
tion radius of an extra dimension. In such a
case, the black hole does not notice the ex-
tra dimensional periodic boundary geome-
try. Colorized from [247].

�e common ideas of higher dimensional gravity can be motivated by
a number of concepts. For instance, gravitational radiation can penetrate
the n-dimensional bulk space, while standard model forces are restricted
to the 3-dimensional bulk (Figure 35.1). On the other hand, micro black
holes are supposed to be so small that the geometry of the extra dimensions
plays no role. �is concept is depicted with a toroidial extra dimension in
Figure 35.2, where the black hole event horizon rH is much smaller then
the compact torus radius RC . For reviews about microscopic black holes in
particle physics, see [82, 83, 116, 127, 131, 247, 259, 260, 294, 342, 358, 461].

In this work, we consider hyper-spherical black hole spacetimes, that is,
Schwarzschild-Tangherlini spacetimes [191, 429]

ds2 = − (1− f(r)) dt2 + (1− f(r))−1dr2 + r2dΩ2
n−1 , (35.1)

with the (n − 1)-dimensional hyper-spherical surface element dΩ2
n−1 and

a gravitational function, which is f(r) = 2GNM/r in the classical case.
�ese theories can �t in both the large extradimension scenario, i.e., the
1998 pioneered ADD model (Arkani-Hamed, Dimopoulos, Dvali [32, 35,
36]), and in the universal extradimension scenario [33], i.e., an extension
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to the 1921 developed Kaluza Klein theory [219, 354] which proposes only
one space-like extradimenion.

For sake of simplicity, however, we assume as a new fundamental scale
M∗ = M

2/(n+2)
Pl CnVn according to the large extradimension model only,

where MPl is the 4-dimensional Planck mass scale and Vn is the volume of
the n extra dimensions. For a torodial compacti�cation (Figure 35.2) with
an extend Rc, the volume is Vn = (2πRc)

n and Cn = O(1) a dimen-
sionless prefactor. Unless di�erently speci�ed, all quantities are expressed
in units of the fundamental Planck mass M∗, or of the fundamental length
L∗ = 1/M∗. According to this notation, the e�ective gravitational coupling
constant reads G∗ = 1/M2

∗ .

36 A brief introduction into the Generalized Uncertainty principle
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Figure 36.1: Size vs. Energy relation in
Planck units. Upper panel: Particle size
(Compton wavelength λC ∼M−1) in red,
vs. black hole size (Schwarzschild radius
r ∼ M ). �e shaded area is inaccessible in
the particle acceleration/compression pro-
cess. At the sub-Planckian (M < 1MP )
regime, a length scale ambiguity arises. �e
lower panel shows the solution proposed by
the self-complete gravity paradigm. (Figure
published in [204]).

Mathematically, the Generalized Uncertainty Principle (motivated in Sec-
tion 0.2) can be casted as commutator relation

[xi, pj ] = i ~ δij (1 + f(~p2)) (36.1)

where the function f is customarily assumed as f(~p 2) ' β~p 2 + . . . at �rst
order. From (36.1), one obtains that spatial resolution be�er than

√
β is no

longer possible, since the uncertainty relations reads

∆x∆p ≥ ~
2

(1 + β(∆p)2). (36.2)

In order to study nonlocal gravity, one can formally shi� the nonlocalities
from the energy momentum tensor to the Einstein tensor, i.e., consider a
nonlocal version of Einsteins equations [60, 282, 329, 441]

G−1
N

(
L2�

)
Gµν = 8πTµν (36.3)

where the Newton’s constant becomes a di�erential operator, � is the co-
variant d’Alembertian and L is a length scale. Eq. (36.3) can be either used
to described large scale degravitating e�ects [34, 61, 62, 184] or short scale
modi�ed gravity theories [115, 204, 210, 330, 340]. One can select a speci�c
pro�le of G−1

N

(
L2�

)
to reproduce the GUP momentum space deformation

d3~p→ d3~p

1 + βp2
(36.4)

for the static potential due to virtual particle exchange by se�ing L =
√
β.

�e resulting non-rotating black hole metric (reviewed in the next Section)
allows for horizon extremisation with consequent formation of a zero tem-
perature black hole remnant at the end of the evaporation [253]. Such a
black hole solution not only supersedes the aforementioned limitations of
the scenario proposed in [4, 5], but o�ers additional interesting properties:
it removes the scale ambiguity of the Schwarzschild metric and ful�lls the
gravity ultraviolet self completeness by preventing black hole radii smaller
than the Planck length (Figure 36.1); it allows for a semiclassical description
of the whole evaporation process for the presence of the SCRAM phase 1 1 �e black hole SCRAM is a cooling down

phase during the �nal stages of the evap-
oration. �e term SCRAM has been intro-
duced in [341] by borrowing it from nuclear
reactor technology. SCRAM is a backronym
for “Safety control rod axe man”, introduced
by Enrico Fermi in 1942 during the Manhat-
tan Project at Chicago Pile-1. It still indi-
cates an emergency shutdown of a nuclear
reactor.

before the remnant formation. If the theory of study has a free parame-
ter, it can be tuned in a way that the minimal length black hole mass M0



models for qantum black holes 109

(a) Kempf-Mangano-Mann metric
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Figure 37.1: (a) �e Kempf GUP met-
ric (37.7) component g00(r) shown for dif-
ferent black hole masses. For comparison,
the dashed line show the corresponding
curves for the unmodi�ed Schwarzschild
metric, i.e., M(r) = 1 in Eq. (37.7). For
heavy masses, there are two horizons (blue
line, locations marked at g00 = 0), for a
critical mass these horizons merge to a sin-
gle one (red line). For a subcritical mass,
there is no horizon (red line). Since there is
still a divergent Ricci scalar, this is a naked
singularity.
(b) Temperature of the GUP black hole in
n = 3 spatial dimensions as a function of
the outer horizon radius r+. For compar-
ison, the Hawking temperature of a tradi-
tional Schwarzschild black hole displayed.
�e blue and red dots mark the cold and hot
remnant, respectively.

coincides with the fundamental mass of general relativity M∗ (self com-
pleteness). For certain theories, also the size of the minimal length black
hole r0 can be identi�ed as the fundamental length scale L∗ [204].

37 Review of GUP Black Holes in the Kempf-Mangano-Mann momentum
measure

To begin with, we review the calculation of the GUP modi�ed Schwarzschild
solution [253] in (3 + 1) dimensions. We chose a speci�c pro�le of the op-
erator G−1(L2�) such that e�ectively the momentum measure is modi�ed
as in the model by Kempf Mangano Mann (KMM) [265].

37.1 3+1 Dimensional GUP inspired Black Holes

Equation (36.3) can be cast in the form

Rµν −
1

2
gµνR = 8πG(L2�)Tµν , (37.1)

that is equivalent to coupling Einstein gravity to a non-standard energy
momentum tensor. In case of a static, spherically symmetric spacetime, one
has

T 0
0 = −Mδ(3)(~x) , (37.2)

corresponding to a vanishing mass distribution, apart from the origin where
a curvature singularity is present [47, 48, 152]. �e action of the operator
G(L2�) determines a smearing of the source term that reads

T 0
0 (~x) ≡ 1

GN
G(L2�)T 0

0 = −ρ(~x) . (37.3)

Since the Dirac delta distribution δ(3)(~x) can be represented as the Fourier
tranform of the plane wave,

δ(3)(~x) =
1

(2π)3

∫
d3~p ei~x·~p . (37.4)

one can apply the Kempf momentum space measure (36.4) in order to “smear
out” the ma�er distribution,

ρβ(~x) =
M

(2π)3

∫
d3~p

1 + βp2
ei~x·~p = M

e
− x√

β

4πxβ
, (37.5)



models for qantum black holes 110

with an energy scale β−1/2 (or length scale
√
β, respectively). �e nonlocal

operator
G(L2�) =

GN

1− L2�
(37.6)

is chosen to mimic GUP e�ects (the modi�ed momentum measure) and is
equivalent to the usual Einstein’s equations with ρβ as source.

From (37.6) it can be seen that in the low energy regime −� � L−2,
(37.1) match Einstein equations and G(L2�)→ GN. Conversely for −� ∼
L−2, strong non-local corrections enter the game, gravity becomes increas-
ingly weaker (G(L2�)� GN), and the source can no longer be compressed
as in (37.2). We note that the pro�le in (37.6) modi�es the momentum mea-
sure in the same way as in (36.4), namely the KMM model [265].

Solving Einstein’s Field Equations with this source à la Schwarzschild
gives the four dimensional line element

ds2 = −
(

1− 2GNM(r)

r

)
dt2 +

(
1− 2GNM(r)

r

)−1

dr2 + r2dΩ2 ,

(37.7)

i.e., the generic static, spherically symmetric metric with

M(r) =

∫

Br

d3~x ρ(~x) (37.8)

representing the cumulative mass distribution, i.e., the ma�er contained
within a 3-ball Br of radius r. Given (37.7), the conservation of the energy
momentum tensor implies its form, namely Tνµ = diag (−ρ, pr, p⊥, p⊥)

with radial pressure pr = −ρ and perpendicular pressure p⊥ = −ρ −
1
2r(dρ/dr). By assuming ρ(~x) given in (37.5), one �nds 2 2 Here, γ(s;x) is the lower incomplete

gamma function, see Appendix A1.2 for
general de�nitions.

M(r) = Mγ

(
2;

r√
β

)
= M

[
1− e−

r√
β − r√

β
e
− r√

β

]
. (37.9)

�e behaviour of the metric (in comparison to the same mass Schwarzschild
metric) can best be seen when plo�ing the metric coe�cient g00(r) as in
Figure 37.1. �e horizon structure resembles that of the (mass dominated)
Reissner-Norström solution: there exist an outer event horizon r+ and an
inner Cauchy horizon r−. �e two eventually merge at the critical mass pa-
rameter M = M0 = 1.68

√
β/GN, corresponding to an extremal con�gu-

ration. �e curvature still diverges at the origin (Ricci scalarR→ 1/4πβr),
but less “brutally” than in the Schwarzschild case. �is can be seen from
the fact that, in contrast to the Schwarzschild case, the metric is no longer
divergent at the origin. �at is, only the �rst and higher derivatives of the
metric are singular at this point, which implies a “so�er” singularity. 3 3 Another quantitative argument is the

Kretschmann scalar, which diverges for
Schwarzschild as K ∼ 1/r6 and for the
GUP only as K ∼ 1/r2.

Such a property of the GUP inspired black holes is similar to that of
the recently proposed holographic metric [204, 346]. For other quantum
corrected black hole solutions, however, the metric and all its derivatives
are regular at the origin implying a removal of the curvature singulari-
ties [340, 341, 343, 344, 347]. Despite the singular behavior of the spacetime
(37.7) the gravitational �eld, ~g = ~∇g00, can be computed in a neighborhood
of the origin: it turns out to be constant and repulsive. Much in the same
way as the aforemetioned regular geometries, the quantum �uctuations of



models for qantum black holes 111

the manifold provide an outer pressure that prevents the energy density to
collapse in a Dirac delta pro�le.

�e existence of an extremal con�guration has an impact on the ther-
modynamics. �e Hawking temperature does not diverge as the black hole
evaporates, but rather reaches a maximum before the SCRAM phase, i.e. an
asymptotic cooling towards a zero temperature black hole remnant. Fig-
ure 37.1 shows the temperature [253]

T (r+) =
κ

2π
=

1

4π

dg00

dr

∣∣∣∣
r=r+

=
1

4π r+

(
1− r2

+

β

e−r+/
√
β

γ(2; r+/
√
β)

)
,

(37.10)
of the metric (37.7). It can be determined from the surface gravity κ at the
outer horizon r+.

�e Hawking temperature of the GUP inspired black holes resembles
the behaviour of the Reissner-Nordström, Kerr and Kerr-Newman metrics.
One has to note, however, that despite the similar pro�le, the evaporation
of Reissner-Nordström, Kerr and Kerr-Newman metrics is drastically dif-
ferent. Indeed the SCRAM phase never takes place in such cases. Rather
than cooling down, such charged, rotating, charged-rotating metrics reach
a Schwarzschild con�guration at the end of the balding and spin-down
phases, that fatally occur in the presence of emissions like Hawking evap-
oration and superradiance. On the other hand, the metric in (37.7) ex-
tends the thermodynamics of the Schwarzschild phase by properly tak-
ing into account the quantum backreaction. To see this one can consider
the ratio T/M < Tmax/M0 ≈ 5.21 × 10−3, where M is the mass of
the black hole. �e mass of the extremal con�guration is determined as
M0 = M(r0) ≈ 1.66

√
β mPl at radius r0 ≈ 1.793

√
β, while the maximum

temperature is Tmax = T (r0) ≈ 9.34× 10−3/
√
β.

�e SCRAM phase goes along with a positive heat capacity and ends in
a zero temperature remnant which is however reached only in the limit of
an in�nite evaporation time.

38 Higher Dimensional KMM Black Holes

A problem arises when naı̈vely generalizing this model from 3 to n spatial
dimensions by keeping the same momemtum space regularization (39.2). in
higher dimensions, as it is proposed by [265],

dn~p→ dn~p

1 + βp2
. (38.1)

Following the previous exposition, one has to start by determining the
energy momentum tensor Tµν . Apart from the higher dimensional grav-
itational constant G∗ in place of GN, the pro�le of the operator G

(
L2�

)

remains the same as in the (3 + 1)-dimensional case, (37.6). As a result, this
leads to the modi�ed energy density [270, 288],

T 0
0 (~x) = −ρ(~x) =

M

(2π)N

∫
dn~p

e−i~x·~p

1 + β~p2
. (38.2)

�e integration includes d − 4 additional spatial dimensions and leads to
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(a) KMM metric in n = 4 spatial dimensions
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Figure 38.1: KMM model in higher dimen-
sions: (a) shows the grativational potential
for one extradimension, (b) shows the tem-
peratures for a couple of extradimensions.
�is �gure extends Figure 37.1 where only
the n = 3-dimensional case is shown.

the following result:

ρ(~x) = − M

(2π)n/2

(
x√
β

)1−n/2

Kn
2−1

(
x√
β

)
, (38.3)

where n = d − 1 is the number of spatial dimensions and Kα(x) is the
modi�ed Bessel function of second kind. Integrating equation (38.3) over
an n-ball Br of radius r yields the cumulative mass distribution

M(r) =

∫

Br

dn~x ρβ(~x) =
(2π)n/2

Γ(n/2)

∫ r

0

dx ρβ(x) (38.4)

= M

[
1− 21−n/2

Γ (n/2)

(
r√
β

)n/2
Kn/2

(
r√
β

)]
. (38.5)

�e metric can be wri�en as a Schwarzschild-Tangherlini metric (35.1) where
the metric function fn(r) is given by

fn(r) =
8πGΓ(n/2)

(n− 1)πn/2−1

M(r)

rn−2
. (38.6)

�e Ansatz for the metric (38.6) requires a conserved energy momentum
tensor of the form Tνµ = diag (−ρ, pr, p⊥, p⊥, ...) with pr = −ρ and p⊥ =

−ρ− r
n−1 (dρ/dr).

38.1 Extremal configuration

�e metric coe�cient can be cast in a more compact form as

fn(r) = 1− G∗m µ(r)

rn−2
. (38.7)

where µ(r) ≡ 1− 21−n/2

Γ (n/2)

(
r√
β

)n/2
Kn/2

(
r√
β

)
, (38.8)

and m ≡M 8 Γ(n/2)

(n− 1)πn/2−1
. (38.9)

By solving the system of equations



fn(r) = 0
dfn(r)
dr = 0,

(38.10)
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one can look for a solution r = r0 representing the vanishing minimum of
fn(r). If the solution exists for a speci�c valuem = m0, one has determined
what is physically known as an extremal black hole con�guration. For n =

3 one �nds m0 = 2M0 = 3.36
√
β/GN and r0 = 1.79

√
β, as we have

already seen in the previous section. For n > 4, the system has no positive
de�ned solution. �is can be easily seen by considering the expansion of
the function µ(r) for small arguments:

µ(r) −−−−→
r�
√
β

(2n− 4)−1

(
r√
β

)2

(38.11)

Being µ ∼ r2 from small radii, the function fn diverges negatively at the
origin forn > 4, while it reproduces the Minkowski space at large distances,
µ ≈ 1. �is behaviour suggests that that fn is a monotonic increasing
function having a single zero, i.e., the event horizon (Figure 38.1).

For n = 4, one �nds a surprising case. �e solution of the system is
m0 = 3

√
β/G∗ and r0 = 0. Evidently this does not represent an extremal

con�guration, but instead reveals the presence of a gravitational object of a
di�erent nature. By using (38.11), one can write the metric in a region near
the origin for n = 4 as

ds2 ≈ −
(

1− 2G∗M

3πβ

)
dt2 +

(
1− 2G∗M

3πβ

)−1

dr2 + r2dΩ2
3 . (38.12)

We note the Newtonian potential is constant at short scales. �is implies
that the mass does not produce any gravitational �eld near the origin. One
can see this by rescaling the r and t variables and by expressing the above
metric in the form

ds2 = −dt2+dr2+

(
1− 2G∗M

3πβ

)
r2
(
dθ2

2 + sin2 θ2

(
dθ2

1 + sin2 θ1dφ2
))
,

(38.13)
introducing a de�cit angle and a conical singularity. �is can be seen by
considering the surface t = const., θ1 = θ2 = π/2, which has the ge-
ometry of a cone. �is conical singularity is a curvature singularity. �e
behaviour of the energy density for n = 4 at short scales, ρ(~x) ∼ |x|−2,
con�rms this pathology of the manifold. �e above scenario reveals that
for n = 4, the gravitational object at the origin is a Barriola-Vileking global
monopole [59], i.e., a particular example of cosmic string [206]. Interest-
ingly, the metric is an exact solution that smoothly interpolates the space-
time region of the monopole a short scales with that of a black hole at large
scales.

38.2 Thermodynamics

A study of the related thermodynamics can be done by considering the
Hawking temperature

TH =
n− 2

4πr+

[
1− r+

n− 2

µ′(r+)

µ(r+)

]
. (38.14)

Before displaying the exact result for the temperature, we consider its asymp-
totic nature. Since the function µ → 1 for r � √β , TH approaches the
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standard semiclassical result at large distances. Conversely at short scales,
(38.11) leads to

TH ≈
n− 2

4πr+

[
1− 2

n− 2

]
, for r �

√
β. (38.15)

For n > 4 the temperature has a divergent behavior as in the semiclassical
case. On the other hand, for n = 4 the temperature vanishes in the limit
r+ → 0. �is means the the temperature admits a maximum and under-
goes a SCRAM phase. Interestingly, following what is discussed above, the
horizon structure prevents the formation of an extremal con�guration. As
a result, the �nal state of the evaporation is nothing but a global monopole
with mass M0 = 3πβ/2G∗ ' 4.71M∗ for β = M−2

∗ . Finally we explicitly
write the temperature for any n, it reads [270]

TH =
πn/2rn/2

(
r
(
Kn

2−1(r) +Kn
2 +1(r)

)
+ (n− 4)Kn

2
(r)
)
− (n− 2)(2π)n/2Γ

(
n
2

)

2rΓ
(
n+2

2

) (
2rn/2Kn

2
(r)− 2n/2Γ

(
n
2

))

(38.16)
Figure 38.1 shows the temperature pro�les, where n = 3 and n = 4 (dis-
cussed in the previous section) clearly stand out, while for all n ≥ 5 there
is no qualitative di�erence to Schwarzschild even on shortest scales.

Clearly, the GUP momentum suppression in n ≥ 5 spatial dimensions is
not enoguh to cure the diverging temperature or curvature, in general. �is
raises the need for a dimension-dependent modi�cation of the GUP.

39 Ambiguity of GUP in higher dimensional spacetimes

Photon

Electron

Figure 39.1: A simpli�ed cartoon for
the Heisenberg’s microscope. �e classi-
cal argument is, that the uncertainty δx
of determining the position of the elec-
tron is related to the wavelength λ ∼
h/∆p sin(ϕ) of a sca�ering photon within
a focussed beam on the electron of an an-
gle ϕ. Due to a classical optics argument,
∆x ∼ λ/ sin(ϕ). �is motivates the
original Heisenberg’s uncertainty principle
∆x∆p ∼ h. In the main text, an electron
displacement due to gravitational interac-
tion is added.

According to the KMM model [265], the GUP manifests itself via a defor-
mation of the integration measure in momentum space. Following (36.1),
the Hilbert space representation of the identity becomes

I =

∫
dd−1~p

1 + β~p2
|p〉 〈p| , (39.1)

where ~p is a (d − 1)-dimensional spatial vector. While momentum opera-
tors preserve their feature as in quantum mechanics, position operators no
longer admit physical eigenstates, as one should expect in the presence of a
minimal resolution length

√
β. A closer inspection of (39.1) shows that the

measure is suppressed in the ultraviolet regime

dVp ≡
dd−1p

1 + β~p2
≈

β~p2�1
|~p| d−4 d|~p|. (39.2)

We note that for d = 4 one recovers (36.4), and the momentum term on
the right-hand side disappears. Conversely for d > 4, the measure diverges
in the ultraviolet regime. As d increases, the e�ect of the GUP becomes
increasingly weaker, when being used to improve the higher dimensional
Newtonian potential.

�ere are, however, other proposals. Gravitational e�ects in quantum
mechanics, such as the GUP, can be motivated with the Gedankenexper-
iment of Heisenberg’s microscope [3, 123].Speci�cally, next to the spatial
uncertainty ∆x ∼ ∆xC arising from the Compton wavelength of a particle
∆xC ∼ λ ∼ 1/∆p, one can introduce an additional displacement ∆xg for
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the electron due to the gravitational interaction with the incoming photon.
By assuming a Newtonian description, ones �nds that

∆xg ∼ GN
Meff

r2

(
r2

c2

)
∼ GN∆p ∼ (

√
β)2∆p (39.3)

for d = 4, whereMeff = h/(λc) is the e�ective photon mass and
√
β ∼ `Pl.

�e total uncertainty is obtained by adding ∆xg to the standard quantum
uncertainty, namely ∆x = ∆xC + ∆xg with ∆xC ∼ 1/∆p. Following the
reasoning of Scardigli and Casadio [398], as well as Carr and Lake [122, 123,
126, 289, 290, 291], the extension of the above calculation to the case d > 4

leads to

∆xg ∼ G∗
Meff

rd−2

(
r2

c2

)
∼ G∗

∆p

rd−4
 ∆xd−3

g ∼ Ld−2
∗ ∆p , (39.4)

having assumed r ∼ ∆xg < Rc. �e uncertainty relation then reads

∆x∆p ≥ ~
2

(
1 +

(√
β∆p

) d−2
d−3

)
, (39.5)

where
√
β ∼ L∗. On the other hand, for r ∼ ∆xg > Rc, the uncertainty

relation is assumed to be that for d = 4 displayed in (36.2). From (39.5) one
can show that the momentum space measure can be expressed as

dVp ≡
dd−1p

1 + (β~p2)
1
2
d−2
d−3

≈
β~p2�1

|~p|d−3 d|~p|, (39.6)

for d > 4. �is means that in such a scenario the GUP corrections are
even milder than those of the KMM model. However, it assumes a modi�ed
higher dimensional GUP as

∆x∆p ≥ ~
2

(
1 +

(√
β∆p

) d−2
d−3

)
. (39.7)

Eq. (39.7) is consistent with what proposed in [122, 123, 289, 290, 319, 398]
and clearly reproduces the higher dimensional Schwarzschild radii for en-
ergies above the terascale.
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Figure 39.2: Completeness plot with the
(3 + 1)-dimensional GUP solution. Com-
pare with Figure 36.1. Published in [288].

Given the ambiguity in results described above, we proposed another
revision to the Heisenberg microscope in [288]. From (39.4) one obtains
that ∆xg ≥ L∗ only for ∆p ≥ M∗. As a result, for any ∆p ≤ M∗ the
gravitational uncertainty is negligible, ∆xg < ∆xC < Rc. In such a regime
the typical interaction distance is controlled by the Compton wavelength,
r ∼ ∆xC ∼ 1/∆p. In Figure 39.2, this complies with “approaching” the
quantum gravity scale from the le� (Sub-Planckian Regime). �is implies
that

∆xg ∼ G∗
Meff

rd−2

(
r2

c2

)
∼ G∗

∆p

rd−4
∼ Ld−2

∗ ∆pd−3. (39.8)

�e above relation relaxes the proportionality condition between ∆xC, ∆xg

and the radius of the Tangerlini-Schwarzschild black hole [288]. As a byprod-
uct, however, one obtains a stronger correction in momentum space since
gravity will begin to probe extra dimensions at scales r < R. �is can be
inferred from the condition

dVp ≡
dd−1p

1 + (β~p2)
d−2
2

≈
β~p2�1

d|~p|, (39.9)
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namely it is uniformly suppressed irrespective of the number of dimen-
sion d.

�ere are three arguments in support of the above reasoning. First, the
requirement that a quantum gravity correction ∆xg is proportional to a
classical quantity like the Tangerlini-Schwarzschild black hole is not fully
consistent. It makes sense only for r > R, namely at length scales at which
gravity becomes classical and only four dimensions are visible. Second, in-
vestigations of string sca�ering showed that the position-momentum un-
certainty relation is of the form (36.2) [19, 21]. Such a result has, however,
been obtained in the eikonal limit and higher order corrections for the ultra-
violet regime of momentum space are expected. �ird, the above corrections
are consistent with the algebra proposed in [159, 318, 320].

In the remainder of this paper, we present higher dimensional black hole
solutions that emerge from the non-local �eld equations (36.3) that account
for GUP e�ects following from (39.2), (39.6) and (39.9) according to the
method �rst proposed in [253].

40 Revised GUP in higher dimensions

In this section, the imprint of the improved higher dimensional GUP (39.9)
is studied. As a start, one has to determine the corresponding operator
G
(
L2�

)
, namely

G
(
L2�

)
=

G∗

1− (L2�)
n−1
2

≡ G∗
∞∑

N=0

[(
L2�

)n−1
2

]N
, (40.1)

where, in case of half integer exponents, n−1
2 = 3

2 ,
5
2 ,

7
2 , . . . , the following

Schwinger representation can be used to express powers of an arbitrary
operator, Ô:

Ôα =
1

Γ(−α)

∫ ∞

0

ds s−α−1 e−sÔ, α ∈ R \ N. (40.2)

�e resulting energy momentum tensor has the same form of that presented
in Section 38, namely Tνµ = diag (−ρ, pr, p⊥, p⊥, . . . ) with pr = −ρ and
p⊥ = −ρ− r

n−1

(
dρ
dr

)
. �e energy density and the other components have,

however, a di�erent pro�le. To determine T0
0, one has to consider the inte-

gral

T0
0(~x) = −ρ(~x) = − M

(2π)n

∫
dn~p

1 + (
√
βp)n−1

ei~x·~p (40.3)

Eq. Short name Volume element Large p limit
No GUP dd−1p pd−2dp

(39.6) Carr dd−1p/(1 + (
√
β p)(d−2)/(d−3)) pd−3dp

(36.4) KMM dd−1p/(1 + (
√
β p)2)) pd−4dp

(39.9) Adjusted dd−1p/(1 + (
√
β p)d−2) dp

Table 39.1: An overview of di�erent GUP
formulations in higher dimensions (also “no
GUP” is considered, for reference), with
their mathematical de�nition (including a
text reference) and their classical limit.
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40.1 Calculation of the energy density

�e modi�ed source term can be wri�en as a Fourier Transform of a spher-
ically symmetric function F {f(p)} (x) ≡ 1

(2π)n/2

∫
dn~p f(p)ei~x·~p

ρ(x) =
M

(2π)n

∫
dn~p

1 + (
√
βp)n−1

ei~x·~p (40.4)

=
M

(2π)n/2
F
{

1

1 + (
√
βp)n−1

}
(x) (40.5)

=
M

(2π)n/2
1

x
n−2
2

∫ ∞

0

dp p
n
2

1

1 + (
√
βp)n−1

Jn−2
2

(xp) , (40.6)

=
Mβ−n/2

(2π)n/2
1

z
n−2
2

∫ ∞

0

dq q
n
2

1

1 + qn−1
Jn−2

2
(zq) , (40.7)

where the Bessel function of �rst kind Jα(x) comes from integrating out
the angles. Due to the complexity of th adjusted GUP, no general closed
algebraic expressions could be derived and instead a numerical approach
was taken.

By introducing the dimensionless variables z = r/
√
β and q =

√
βp,

the above integral reads:

ρ(z) =
Mβ−n/2

(2π)n/2
1

z
n−2
2

∫ ∞

0

dq q
n
2

1

1 + qn−1
Jn−2

2
(zq) . (40.8)

For small arguments the Bessel function behaves as

Jα(z) ≈ 1

Γ(α+ 1)

(z
2

)α
. (40.9)

�is means the integral is well de�ned at the lower bound. For large argu-
ments the Bessel function can be wri�en

Jα(z) ≈ 1

|z| . (40.10)

�is guarantees the expected convergence of the integral for q → ∞. On
these grounds, the numerical evaluation is possible by integrating from
zero-crossing (i.e. the z where Jα(z) = 0) to zero-crossing in order to stabi-
lize the integration and to ensure convergence (Figure 40.1). For numerical
purposes, the density can be approximated as

ρ(z) ≈ Mβ−n/2

(2π)n/2
1

z
n−2
2

K∑

k=0

I∆q∑

i=0

∆q q
n
2

i,k

1

1 + qn−1
i,k

Jn−2
2

(zqi,k) . (40.11)
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Figure 40.1: �e key part for a suc-
cessful numerical integration of the
highly oscillatory Hankel transformation∫∞
0 f(x)Jα(xy) with kernel f(x) and

limx→∞ f(x) = 0 is to correctly track
the zero crossings of the oscillating Bessel
function. Here, every color indicates a
seperate integration domain.

Here, K ∈ N are the number of zero crossings taken into account (typ-
ical values are K = 3000), and I ∈ N are the total number of integration
support points, each given by qi,k = jk+ i∆q, with jk the coordinate of the
kth root of J(n−2)/2(zq). Clearly, with I,K → ∞ and ∆q → 0, the con-
tinous integral (40.8) is recovered. We checked convergence with di�erent
grid sizes I,K ∈ {102, 103, 104}. For the actual numerical integration, a
standard Gaussian quadrature rule is applied. �e function values ρβ,n(z)

are then available on a discrete sample set {zi} ⊂ R with arbitrary reso-
lution and coverage. With this numerical approach, one can also integrate
the mass distribution,

M(r) = M

∫

Br

dn~x ρβ(x) = MAn−1

∫ r

0

dxxn−1ρ(x) , (40.12)
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Figure 40.2: Mass distributions (40.12) for
the revised GUP model (39.9), for di�er-
ent number of spatial dimensions n. While
n = 3 complies with a smeared Heaviside
function, there are oscillations around the
spacetime mask, which however quickly
decline for larger radii (the scale is r0 ∼
L∗ ∼ LPl). Note that for larger radii, even
regions withM(r) < 0 are possible.

where An−1 = 2πn/2/Γ(n/2). Again, this integral is carried out numer-
ically as a cumulative sum in a straightforward manner. From the ma�er
distribution, one obtains the metric coe�cients (38.6). Figure 40.3 shows the
mass distributionM(r) for a number of extra dimensions. Interestingly the
case n = 3 is the only havingM(r) described by a monotonic increasing
function. For n > 3 there is a surprising new behavior: the function oscil-
lates with an amplitude that increases with n and decreases with r. A naive
interpretation of the oscillations is the presence of negative contributions
in the energy density for some regions close to the spatial origin. We re-
call that such negative density regions are not a remote possibility, at least
during the early stages of the Universe, for the presence of strong quantum
�uctuations of the spacetime manifold [313, 332].

One can also advance another interpretation based on the presence of
n − 1 tachyon states of mass, i/

√
β ∼ iM∗, emerging from the poles of

the integrand function in (40.3). As a consequence the energy density ρ(~x),
despite being positive de�ned at the origin, oscillates around zero for larger
values of r. A possible explanation can be found in the fact that the GUP
captures only part of the non-perturbative corrections of quantum gravity.
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Figure 40.3: Temperature pro�les (de-
�ned as in (38.14), with the revised GUP
of Section 40) in di�erent number of
dimensions, compared with the respec-
tive Schwarzschild-Tangherlini tempera-
ture (dashed lines). �e red disks mark lo-
cal maxima, while the blue disk marks the
evaporation endpoint. Since the abscissa
is given in multiples of the respective end-
point radius, all temperatures end at the
same point.
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Interestingly, such oscillations of the Newtonian potential have been found
in a variety of formulations aiming to amend Einstein gravity. �ese include
f(R)-gravity [76, 119, 120, 145, 197, 349, 350, 351, 399], string induced, ghost
free, non-local gravity [185, 207] and other non-local formulations [264]. On
the other hand, in the low energy limit for which only the 3 spatial dimen-
sions are visible, the oscillations disappear as expected in similar quantum
gravity contexts [237, 360]. �is scenario is consistent with the fact that
GUP corrections descend from the eikonal limit of string collisions at the
Planck scale [17, 18, 19, 20, 21, 225, 226].

Even if the above e�ects are just a short-scale, quantum mechanical prop-
erty of the solution, they have important repercussions on the thermody-
namics of the system. �e pro�le of the temperature is presented in Fig. 40.3.
One can see that the oscillations ofM(r) produce temperature oscillations
corresponding to phase transitions from negative to positive heat capacity
phases. �e resulting variable luminosity of the black hole can be termed as
a light-house e�ect. Interestingly such an e�ect increases with n. For lower
n one obtains small amplitude oscillations of the temperature.

Different endpoints for small and big black holes

More importantly, further scenarios are possible. In Figure 40.4, the case
of d = 9 space time dimensions is depicted. For this number of dimen-
sions, two scenarios are possible, depending on the black hole mass. For
big mass black holes, M > M1, the temperature oscillation determined
an anticipated shut-down of the Hawking emission with the formation of
zero temperature remnants; we refer to the masses of these zero tempera-
ture con�gurations as M1 = 3.73× 106M∗. Such a large mass regime is a
characterized by a rich horizon structure. For M > 2.14M1, there are just
two horizons, an event horizon, r+ and an inner Cauchy horizon, r−. For
M = 2.14M1, the function g00 admits a double zero between the afore-
mentioned two horizons. For smaller masses M0 < M < 2.14M1, the
function g00 admits 4 simple zeros, i.e., r− < r2 < r3 < r+. Finally for
M = M1 = 3.73×106M∗, there is the merge between r3 and r+ that form
a double zero, corresponding to the extremal con�guration, i.e., the end
stage of the evaporation. In terms of horizon radii, there is a regime that
do not occur, i.e. ri < r < r1, where r1 = 5.93r0 is the size of the large
black hole evaporation endpoint, and an intermediate radius ri = 5.0r0.
For even smaller masses, M < M1 however, there are horizons again, r±,
that eventually merge in a new extremal con�guration r0 = r− = r+ for
M = M0 = 5.15× 103M∗.

n
√
β0 r0 m0

3 1.45 2.60 2.42
4 0.71 1.18 5.31
5 0.48 0.85 7.43
6 0.38 0.71 8.88
7 0.32 0.64 9.89
8 0.27 0.59 10.6
9 0.25 0.56 11.1
10 0.23 0.55 11.5

Table 40.1: Numerical values for
√
β0 in

the self complete paradigm. �ese values
are of no further meaning, they just demon-
strate that it is possible to apply the self-
complete paradigm in any number of extra
dimensions.

Here, the self-completeness paradigm was implemented by choosing the
free parameter β in a way, that the Compton wavelength λC = h/M0c of
the zero temperature con�guration is equal to its horizon radius r0. �e
determination of β cannot even be done analytically in 3+1 dimensions.
�erefore, numerical results are given in Table 40.1.

In conclusion, there is a small mass and a large mass regime for black
holes. �e former can be thought to form due the high density �uctuation
of the early Universe [124] or by de Si�er space decay, as predicted in terms
of the instanton formalism [94, 311, 312].
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Figure 40.4: Comprehensive presentation
of the possible con�gurations of the re-
vised GUP model (Section 40) in n =

8 spatial dimensions. �e central panel
shows the temperature (solid line) com-
pared to the Schwarzschild-Tangherlini so-
lution (dashed). �ere are two regimes,
shaded in red (small black holes) and green
(big black holes). Typical gravitational po-
tentials for di�erent masses for the small
black holes are depicted in the le� panel,
while the right panel holds the same for the
large black holes. Dots always denote hori-
zons. �e di�erent scenarios are discussed
in the main text.
Appendix A7 shows this diagram in an-
other representation and also covers the
n = 9 case, for comparison.

We have also to note that the presence of two remnant masses posits an
ambiguity of the scale at which gravity may be self complete [178, 182, 335,
345, 418]. In other words gravity is able to mask singularities by covering
them with an extremal con�guration but the la�er has no unique mass scale.

41 Summary

�e fact that the black hole temperature diverges for small black holes is
one of the indicators that a theory of quantum gravity is needed. �e Gen-
eralized Uncertainty Principle is a quantum gravity e�ect and modi�es this
behavior (SCRAM phase). Since the GUP can for example be motivated by
string theory which needs extra dimensions this strongly suggests that the
cure of the temperature divergence should also work in higher dimensions.

In 3+1 dimensions the GUP gives rise to a SCRAM phase for Planckian
black holes. We showed that the GUP as it has been used in the 3+1 dimen-
sional case does not give rise to SCRAM phase in higher dimensions. How-
ever, we note that in the 4+1 dimensional case, the GUP gives rise to a con-
ical singularity. We generalized the GUP to higher dimensions in the form
1/(1 + (

√
βp)n−1), with n spatial dimensions, motivated by the reason-

ing in an earlier work [288] In this revised GUP we recovered the SCRAM
phase.

We also found that there are new oscillations in the density ρ(r) around
zero. �ese oscillations lead to oscillations in the mass function M(r), but
are dampened in the metric g00(r). Nevertheless they again show up in the
temperature which now shows a Lighthouse E�ect of oscillating tempera-
ture around the Planck size. Starting at 8+1 dimensions, there are additional
zeroes of the temperature, giving rise to a complex phase structure, where
the small black holes can be formed in the primordial universe.
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Conclusions

chapter

VI
In this thesis, the applicability of sophisticated family of high order and communication avoiding dicontinous
Galerkin (DG) schemes wer eexamined for solving partial di�erential equations in relativistic astrophysics. �ese
schemes where supplemented with an ADER time integration and a �nite volume limiter in order to deal withspace-
time singularities and hydrodynamical discontinuities (i.e., shocks). Di�erent to what has been done in literature
before, an explicit split of di�erential contributions in source terms combined with a path-conservative treatment,
�rst proposed by Castro and Parés in the �nite-volume context [129, 357] and later extended also to ADER-DG
schemes in [166, 169], was carried out. �e schemes were implemented in di�erent state of the art adaptive mesh
re�nement (AMR) codes.

In order to employ the Einstein equations for the proposed schemes, a novel �rst order formulation with con-
formal and constraint correcting features had to be found: Tthe conformal and covariant Z4 formulation. �is
formulation was proven to be strongly hyperbolic for popular gauge choices. �e evolution laws for the ADM quan-
tities α, βi, γ̃ij as well as the conformal factor φ could be reduced to a pure system of ODEs, thanks to the auxilliary
variables which render derivatives as purely algebraic source terms. �ese ODEs have zero eigenvalues and unit
eigenvectors, leaving a PDE system with 47 variables open for hyperbolization. For the remaining system of 47
variables, �rst approximate symmetrization by use of ordering constraints is a key ingredient, and second the de-
pendency of the ADM (composing) variables α, βi, γ̃ij and φ only results in a fully linearly degenerate PDE system.
Furthermore, the adoption of the genuinely non-conservative from (in contrast to a �ux-conservative form such as
in [11, 89]) was also essential for applying the previously mentioned simpli�cations, as the Jacobian ∂F ik/∂Qj of the
�ux F ik(Q) in direction k also depends on the dynamical variables. �e quasi-linear form of the �ux-conservative
system therefore contains di�erential terms in the ADM variables. �e proof of strong hyperbolicity was given for
two standard gauge choices, i.e., harmonic lapse and zero shi� as well as 1+log slicing with Gamma driver. In both
cases, the full eigenstructure was computed. �is is the �rst time that hyperbolicity of a �rst-order reduction of
the CCZ4 system is analyzed, in particular including the Gamma-driver shi� condition. However, the system is not
symmetric hyperbolic in the sense of Friedrichs [205]. Further work in this direction will be necessary to try and
achieve a symmetric hyperbolic form of FO-CCZ4 with a convex extension.

Subsequently, the equations of relativistic hydrodynamics were brought into a similar form, with a clear seper-
ation between conserved hydrodynamic �ux and non-conserved di�erential gravitational source, induced by the
curved spacetime. �is much simpler rewrite did not change the hyperbolic nature of the PDE system. At this stage,
the development of exactly well-balanced numerical methods for the GRMHD equations is still out of scope, but
further developments in this direction would de�nitely deserve a�ention.

In a variety of tests, the applicability of the ADER-DG scheme was demonstrated on the Einstein-Euler system.
Here, the spacetime evolution was tested still separately from the hydrodynamic ma�er evolution, which itself was
evolved on a �xed background spacetime. Nevertheless, these were the �rst simulations of black hole spacetimes
and (�xed) general relativistic magnetohydrodynamic �ows performed in three spatial dimensions with a high-order
DG code. All previous simulations of black-hole spacetimes with high-order DG schemes, in fact, were limited to
the one-dimensional case only.

Future research will consider the implemention of the algorithms within a code which scales well on thousands of
codes/computers. Furthermore, the coupled FO-CCZ4 and GRMHD system, solved with a single numerical scheme,
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will be evolved using such a code. �is will allow to simulate binary neutron star merger binaries with the Limiting
ADER-DG scheme.

We have also considered a general-relativistic estimate on the treshold mass which seperates prompt collapse from
a delayed collapse scenario in the case of binary neutron star mergers. As part of a systematic parameter study, a large
number of binary neutron star merger simulations was carried out, adopting a series of realistic nuclear equations of
state. A number of universal laws were found, which either relate the treshold mass of a particular equation of state
to its maximum stable static equilibrium (TOV) solution or its compactness. We also could constraint the maximum
radius and mass of neutron stars in general which go hand in hand with observational constraints from gravitational
wave observations.

�ese results can be improved in at least two ways. First, as new hot equations of state becomes available for
numerical simulations, it will be possible to extend the analysis carried here, reducing its uncertainty. Second, as new
detections from binary neutron-star mergers will be revealed, the masses of these systems and their electromagnetic
counterparts will be used to set ever more precise lower bounds on the radii of neutron stars.

As a �nal project, we have studied higher-dimensinal black hole solutions and their thermodynamics from GUP-
inspired approachs. �ese include the Kempf-Mann-Mangano (KMM) momentum measure, a new modi�ed mo-
mentum measure, and also the Scardigli-Casadio-Carr-Lake (SCCL) approach. �e fact that the standard Hawking
temperature diverges for small mass black holes is one of the indicators that a theory of quantum gravity is needed.
�e GUP is such a candidate and has been shown to modify this behaviour in the standard (3 + 1)-dimensional case
(SCRAM phase). Since the GUP can for example be motivated by string theory which needs extra dimensions this
strongly suggests that the cure of the temperature divergence should also work in higher dimensions.

In the former case, we have shown that for n = 4 spatial dimensions, the metric function admits an extremal
solution whose temperature exhibits the SCRAM phase of the regular (3 + 1)-D KMM black hole. Additionally, the
solution reveals a conical singularity at the origin, which can be interpreted as a Barriola-Vileking like monopole.
For n > 4, howver, the GUP has no e�ect and the temperatures diverge as with the standard Schwarzschild solution.

We have also investigated a revised GUP approach that produces an alternate momentum measure that uniformly
suppresses the GUP in the limit of large ~p. In this case, the solution reveals a much richer thermodynamic behaviour
that is characterized by a “lighthouse e�ect”. �at is, for increasing n > 4, both the mass distribution and tempera-
ture oscilate as the black hole evaporates. �is is possibly due to negative energy density contributions close to the
origin, or alternatively due to the presence of tachyon states.

�e metric function also admits multiple horion structures depending on the black hole mass, relative to a critical
value M0. �is particular characteristic has the e�ect of dividing the solutions into two classes, i.e. small and large
black holes.

A variety of future investigations are possible, in particular those which involve di�erent interpretations of
the GUP (e.g., a higher dimensional version of the metric derived in [125]). Alternatively, GUP-inspired Reissner-
Nordström and Kerr metrics might introduce additional new physics similar to the lighthouse e�ect discussed herein.



123

Appendix

chapter

A
A1 Notation and conventions

�e notation chosen in this work mostly follows the standard notations in
general relativity: Indices of four-dimensional tensors 1 are denoted with 1 or symbols, in general like the Christof-

fel symbolslower-case greek le�ers, as in Xµνη...
αβγ.... �ese indices run over [0, 1, 2, 3] (or

[1, 2, 3, 4], if prefered). �ree-dimensional tensors are denoted with lower-
case latin le�ers, as in Xijk...

abc... . �ese indices run over [1, 2, 3]. Explicitely
higher dimensional spatial tensors are denoted with upper case latin le�ers,
as in XIJK...

ABC.... �e indices run over [1, 2, 3, . . . , n] in n spatial dimensions.
Einstein sum convention is applied all over the text. For symbols which

do not follow the concept of covariance (i.e., not described with di�eren-
tial geometry), the index ordering (upper or lower) is arbitrarily chosen in
order to meet Einstein sum convention. With such symbols, lower latin in-
dices are also used for various kind of indices. For instance, state vector in-
dices are typically given with lower case indices, but they do not count over
[0 . . . 3] but over [1, . . . , N ], whereN is the number of state vector variables.
Another example are Gaussian basis functions which run over a speci�c set
[1, . . . , N ] whereN is the typically the order of the method/number of basis
points.

An higher-dimensional object may be wri�en without indices. In gen-
eral relativity, this concept is known as abstract index notation and allows to
write simple contractions as scalar products, revealing a descriptive mean-
ing of some terms. For covariant symbols, this notation is avoided within
this text. However, it is widely adopted for other types, such as three-
vectors or state vectors. Generally, the arrow in ~x indicates that ~x = (x1, x2, x3)
2 is a three-vector. In contrast, a symbol in bold typeface such as x or x 2 Intentionally, I do not formally

distinguish between a de�nition
~x = (x1, x2, x3) or ~x = (x1, x2, x3)T ,
i.e., column and row vector, because the
nature of the object typically depends on
the surrounding: A numerical or CAS im-
plementation or as part of a linear algebra
calculation where it’s shape ma�ers.

only indicates that the symbol is an abstract object with one or more in-
dices. For instance, �uxes F ij are wri�en in bold, meaning that the funda-
mental object is F ijk (which however does not transform like a tensor). �e
shortened notation where only a few indices are wri�en out emphasizes
the implementation where only the n × n matrix is of interest. �erefore,
the index-free notation is adopted only in situations when the clarity shall
be preserved, for instance because objects are decorated with discreteness
indicators. Another example is Qk , this may indicate the kth component of
the state vector Q, but Qsn is the whole state vector at spatial position xn
and time index ts.

Furthermore, since this thesis deals with �eld theory, almost all objects
are �elds, i.e., X = X(t, ~x). Again, this information can only be provided
by context.
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A1.1 Units

�is work uses geometric units with gravitational couplingG = 1, speed of
light c = 1. In astrophysical simulations, we set the solar mass (mass of the
sun)M� = 1 and measure subsequently all quantities in these units. In con-
text of quantum mechanics, natural units are adopted, where furthermore
the reduced Planck constant ~ = 1 and the Boltzmann constant kB = 1.

A1.2 Symbols

• States (state vectors) in PDEs are usually denoted asQ or u. V is typically
the symbol for a primitive vector.

• Landau symbol O for the physical “at the order of” or the computer sci-
ence complexity.

• Levi-Civita-Symbol (total antisymmetric tensor); in two dimensions:

εik =

(
0 1

−1 0

)
(A1.1)

• Levi-Civita-Symbol in three dimensions: Spatial 3-Levi-Civita tensor den-
sity ε̃ given by

ε̃ijk = γ−
1
2 [ijk] , ε̃ijk = γ

1
2 [ijk] . (A1.2)

where [ijk] is the regular total antisymmetric symbol, commonly known
as epsilon tensor/Levi-Civita tensor in �at space,

[ijk] =





1 for even permutations of (1, 2, 3),

−1 for odd permutations,
0 otherwise.

. (A1.3)

• Θ = Θ(x) is in general the symbol for the Heaviside step function

Θ(x) =





1 x > 0

0 x < 0
, (A1.4)

but sometimes also used for other cases 3 3 An example is Zµ = (Θ, Zi) in the FO-
CCZ4 PDE (Chapter II).

• δ is either the Dirac delta function δ = δ(x), also refered to as unit
impulse or Dirac distribution, de�ned via its property

f(a) =

∫
f(x)δ(a)dx . (A1.5)

In n spatial dimensions, the symbol is refered to as δ(n)(~x). δ can also
be the discrete version, i.e., the Kronecker Delta

δij =





1 if i = j

0 else (if i 6= j)
(A1.6)

• Lower incomplete Gamma function

γ(s;x) =

∫ x

0

dt ts−1e−t (A1.7)
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• the p norm, or Lp norm, is de�ned as

|~x|p =

(
k∑

i=1

|xi|p
)1/p

(A1.8)

with a vector ~x ∈ Rk and |r| with the absolute of a real number r ∈ R.
�e norms de�ne Lp function spaces.

• Symmetric and antisymmetric part of tensors, exemplary for a (0, 2) ten-
sor: Symmetric part T(ab) = 1/2 (Tab + Tba), antisymmetric part T[ab] =
1/2 (Tab − Tba).

• Covariant derivative ∇µ, exemplary for a scalar �eld φ, a covector �eld
tµ, a (2, 0) tensor Aµν :

∇µφ = ∂µφ (A1.9)
∇αtν = ∂αt

ν + Γναγt
γ (A1.10)

∇λAµν =
∑

δ

∂λA
µν + ΓµδλA

δµ + ΓνδλA
µδ (A1.11)

• Lie derivative Lξ, for a vector �eld ξµ and the same �elds from above:

Lξφ = ξα∂αφ (A1.12)
Lξtν = ξα∂αt

ν − tα∂αξν (A1.13)
LξAµν = ξα∂αA

µν − ξµ∂αAαν − ξν∂αAµα (A1.14)

Sometimes, Lξ is wri�en as Lξ for brevety.

A1.3 Symbols with canonical physical meaning

• Christo�el symbols of �rst kind

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) (A1.15)

• 4-metric, expressed by ADM quantities:

gµν =

(
−α2 + βiβ

i βi

βi γij

)
(A1.16)

• See Table A1.1 for an overview of symbols used within the context of
quantum black holes.

A2 Convergence, consistency and stability of PDEs

�is section shall brie�y collect a couple of standard de�nitions which com-
plement the introductory section 2 on page 18 about PDEs.

Definitions

�e initial boundary value problem on the spatial domain Ω is de�ned as

∂tQ(t, x) = D Q(t, x) (A2.1)
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symbol semantics
M Generic total mass of a black hole
L Any length scale
T Hawking temperature
d Number of total space-time dimensions
n Number of total spatial dimensions
GN Newton’s constant in 3+1 dimensions.
MPl Planck mass in 3+1 dimensions.
LPl Planck length in 3+1 dimensions.
G(. . . ) Newton’s constant as di�erential operator
M∗ Fundamental mass scale in any dimension
L∗ Fundamental length scale in any dimension√
β Length scale in the GUP
M(r) Cumulative mass distribution
M0 Mass of critical black hole con�guration
r0 Radius of critical black hole con�guration
Tmax Temperatur of critical black hole (maximum temperature)
Tµν Nonlocal energy-momentum tensor
ρ(~x) Density distribution
fn(r) Metric function in n spatial dimensions
r± �e inner and outer horizons radii.
r0 �e size of the extremal black hole con�guration.
rC �e critical radius, at this radius the temperatures are max-

imal.

Table A1.1: �is is an overview of symbols
as they are introduced and used in Chap-
ter V, exclusively.

with solution vector Q and (spatial) diferential operator D, equipped with
initial conditions Q0(t0, x) and boundary conditions Q0(t, x), x ∈ ∂Ω.

For discretization, we de�ne a set of discrete points xi (not neccessar-
ily a grid) which cover the discretized domain Ω̃, as well as time steps tn

(again not neccessarily uniformly distributed). �e real solution uin is fur-
ther approximated by a discretization in the solution vector space ũni , and
the di�erential operator D̃which is acting on Ω̃. Furthermore, we introduce
a discrete time evolution operator Ts which ful�lls

f(t2) = Tt2−t1f(t1), and Tt ◦ Ts = Tt+s , (A2.2)

where the later makes Ts a member of a semi-group [227, 285]. �is operator
allows to write the IBVP (A2.1) with discrete time evolution as

ũ(t+ ∆t) = T̃ ∆
∆tũ(t) . (A2.3)

We then de�ne the

• Pointwise error Eni = ũni − uni and subsequent global error |E(t)| =(∑
i,n |Ein|p

)1/p

as Lp norm (A1.8) with typically p = 1, 2.

• Convergence↔ lim∆→0 |E(t)| = 0 ∀t 4 4 �is short notation used in this section
is actually predicate logic, → is the impli-
cation (material conditional),� is the logic
biconditional.

• Local truncation error Hn
i = D̃u−Du

• Truncation error H(t) =
(
T̃ ∆

∆t − T∆t

)
u(t)
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• Total variation diminishing (TVD)↔ |T̃ ∆
∆tu|TV ≤ |u|TV .

• Consistency↔ lim∆→0 |H(t)| = 0 ∀t ∈ R

• Convergence order is p↔ |H(t)| = O(∆p).

• Stability↔ supu6=0
|H(t)|
|u| ≤ C ∀t with a constant C ∈ R.

• Well-posedness i� |u(t, x)| ≤ keαt|u0(x)|, with a norm | · | and k, α
constants. �e non-continous dependency of the solution on the initial
data is especially obvious for a small perturbation with k � 1 and α�
1, which however will change the solution to a very di�erent one in �nite
time.

Theorems for stability

For linear equations, there is the Lax-Richtmeyer equivalence theorem which
reads in short [298, 387]

(stable ∧ consistent) → convergence , . (A2.4)

A direct consequence is that (again only for linear systems ) any scheme of
order p has a global error E(t) = O(∆p).
For nonlinear PDEs, there is the Lax-Wendro� theorem which states

(convergent solution found) → solution is weak. (A2.5)

�e total variation of a function f(x) shall be de�ned as

|f |TV = sup
h→0

1

h

∫

Ω

|f(x)− f(x− h)|dx =

∫

Ω

|f ′(x)|dx , (A2.6)

where the second equivalence sign holds only if f is di�erentiable (i.e., the
derivative exists). Most TV-stable schemes are TVD. Monotonicity→ TVD.
Monotone schemes are at most �rst order accurate, monotonicity preserv-
ing schemes, but can archive high accuracy.

A3 ADER-DG vs RK-DG: Strong MPI scaling and performance compari-
son

In this section 5 we provide a detailed and quantitative performance anal- 5 Parts of the texts and results in this sec-
tion are published in [194]. �e bench-
marks of this section belong to the hydro-
dynamics chapter III. In contrast, the nu-
merical methods covered here belong to
chapter I.

ysis of the new ADER-DG schemes for the GRMHD equations proposed in
this work. We compare CPU times and MPI scaling results for ADER-DG in
comparison with classical Runge-Ku�a DG (RKDG) schemes. We further-
more provide CPU time comparisons between ADER-DG and ADER-WENO
�nite-volume (FV) methods.
As �rst test we run the Michel accretion problem again on the domain
Ω = [3, 5.5]×[1, π−1] in two space dimensions using a sequence of succes-
sively re�ned meshes ofNx×Nx DG elements and Nx(N+1)×Nx(N+1)

�nite-volume zones until a �nal time of t = 10. We use a third-order ADER-
DG scheme (N = 2) and compare with a third-order ADER-WENO �nite-
volume scheme, see [167, 177]. In order to make the comparison fair, the
mesh of the FV scheme isN + 1 times �ner than the one of the DG scheme,
since the DG method has N + 1 degrees of freedom per cell and per space
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Nx L2 error L∞ error WCT [s] TDU [s]

D
G
O

3
6 2.53E-05 3.26E-05 15.9 1.0470E-04
12 3.32E-06 4.46E-06 74.4 6.3726E-05
18 1.01E-06 1.37E-06 193.5 4.9770E-05
30 2.26E-07 3.07E-07 733.4 4.1173E-05

FV
O

3

18 2.77E-05 5.99E-05 37.7 5.1765E-04
36 6.40E-06 1.72E-05 231.9 4.0117E-04
54 2.73E-06 8.81E-06 694.0 3.5679E-04
90 9.44E-07 3.78E-06 2754.8 3.0694E-04

Table A3.1: Comparison of L2 and L∞ er-
rors for the Michel accretion problem in
2D. Wall clock times (WCT) and CPU time
per degree of freedom update (TDU) in sec-
onds for a third-order ADER-DG scheme
(N = 2) compared with a third-order
ADER-WENO �nite-volume (FV) scheme.

dimension. �e total number of degrees of freedom is therefore the same for
both methods. We present the L2 and L∞ errors for the density ρ obtained
with both methods. We also report the wall clock time (WCT) measured in
seconds and the time needed by the scheme to update one single degree of
freedom on one single CPU core (DTU), measured also in seconds. �e in-
verse of this number represents the number of degrees of freedom that the
scheme is able to update in one second on one CPU core and can be com-
pared with other �nite-volume and �nite-di�erence methods. As computer
hardware for this test we use one single CPU core of a workstation with an
Intel i7-4770 CPU with 3.4 GHz clock speed and 16 GB of RAM. �e results
are shown in Table A3.1, from which it becomes clear that the ADER-DG
scheme is faster and more accurate than the ADER �nite-volume scheme
using the same number of degrees of freedom. Similar results have already
been reported in [167] and [163] for the Euler equations of hydrodynamics,
the MHD equations and the compressible Navier-Stokes equations, using
the uni�ed framework of PNPM schemes.

As second test case we take the large amplitude Alfvén wave problem in
�at Minkowski spacetime described in [154] and also used later in [167]
and [466]. We use the 3D computational domain Ω = [0, 2π]3, which
is discretized with ADER-DG schemes of increasing order of accuracy in
space and time and using a sequence of successively re�ned meshes of size
Nx × Nx × Nx. To provide a direct a comparison, we solve the same test
problem also with high order Runge-Ku�a DG schemes [143, 144]. Since
ADER-DG schemes are uniformly high order accurate in space and time,
for the RKDG method we use appropriate Runge-Ku�a schemes in time
whose temporal order of accuracy exactly matches the spatial one. In par-
ticular, we use the classical third and fourth-order RK schemes of [286],
the ��h order Runge-Ku�a scheme of [199] and the �rst one of the sixth
order Runge-Ku�a schemes proposed in [114]. Note that due to the well-
known Butcher barriers that apply to high order RK schemes for nonlinear
ODE systems, the ��h order RK scheme has six stages, and the sixth order
RK scheme has seven stages. We run the test problem with both schemes
without any limiter up to a �nal time of t = 1 and report the errors of the
variable By measured in L2 norm.
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Figure A3.1: Strong scaling test for the 3D
GRMHD equations and performance com-
parison between fourth-order ADER-DG
and RKDG schemes (N = 3). �e test case
is the large amplitude Alfvén wave prob-
lem solved in 3D up to t = 1 on a uniform
Cartesian mesh composed of 40× 40× 40

elements. �e results were obtained with
a pure MPI implementation on the Super-
MUC phase I system at the LRZ in Garch-
ing, Germany, using 64 to 16,000 CPU cores.
On 16k cores, each MPI rank has only 4 el-
ements to update.

�e computational results for ADER-DG and Runge-Ku�a DG schemes
are reported in Table A3.2, together with the measured wall clock times
(WCT) in seconds and the time needed by each scheme to update one sin-
gle degree of freedom (TDU) in microseconds. Again, the inverse of TDU
in seconds represents the number of degrees of freedom that the scheme is
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Nx L2 error L2 order WCT [s] TDU [µs] Nx L2 error L2 order WCT [s] TDU [µs]
ADER-DG (N = 3) RKDG (N = 3)

8 7.6396E-04 0.093 33.8 8 8.0909E-04 0.107 39.2
16 1.7575E-05 5.44 1.371 31.5 16 2.2921E-05 5.14 1.394 32.0
24 6.7968E-06 2.34 6.854 31.0 24 7.3453E-06 2.81 6.894 31.2
32 1.0537E-06 6.48 21.642 31.1 32 1.3793E-06 5.81 21.116 30.3

ADER-DG (N = 4) RKDG (N = 4)
8 6.6955E-05 0.363 46.8 8 6.8104E-05 0.456 51.4
16 2.2712E-06 4.88 5.696 45.9 16 2.3475E-06 4.86 6.666 51.0
24 3.3023E-07 4.76 28.036 44.9 24 3.3731E-07 4.78 29.186 45.3
32 7.4728E-08 5.17 89.271 45.2 32 7.7084E-08 5.13 87.115 43.4

ADER-DG (N = 5) RKDG (N = 5)
8 5.2967E-07 1.090 53.1 8 5.7398E-07 1.219 55.9
16 7.4886E-09 6.14 16.710 51.2 16 8.1461E-09 6.14 17.310 52.5
24 7.1879E-10 5.78 84.425 51.2 24 7.7634E-10 5.80 83.777 49.4
32 1.2738E-10 6.01 263.021 50.3 32 1.3924E-10 5.97 260.859 49.5

Table A3.2: Accuracy and cost comparison
between ADER-DG and RKDG schemes of
di�erent orders for the GRMHD equations
in three space dimensions. �e test problem
is the large amplitude Alfvén wave solved
in the domain Ω = [0, 2π]3 up to t = 1
on a sequence of successively re�ned Carte-
sian meshes with N3

x elements. �e er-
rors refer to the variable By . �e table
also contains total wall clock times (WCT)
measured in seconds and the time needed
by the scheme to update one single degree
of freedom on one single CPU core (TDU)
measured in microseconds. All simulations
have been performed in parallel on 512 MPI
ranks of the SuperMUC phase I system at
the LRZ in Garching, Germany. Note that
for the coarsest grid with Nx = 8, each
MPI rank has only one single element to up-
date.

able to update in one second on one single CPU core and can be directly
compared with existing �nite-volume and �nite-di�erence codes. We ob-
serve that the CPU times and error norms are comparable for both schemes.
For all mesh sizes Nx and polynomial approximation degrees N we have
used 512 CPU cores of the Phase I system of the SuperMUC of the LRZ in
Garching, Germany. �is means that for the coarsest mesh with Nx = 8,
each MPI rank has only one single element to update. �e results of Table
A3.2 clearly show that for a small number of elements per MPI rank our
communication avoiding ADER-DG schemes are computationally less ex-
pensive than RKDG schemes of the same order, since RKDG requires MPI
communication in each Runge-Ku�a stage. We �nally run this test problem
on a �xed grid of 64,000 elements (Nx = 40) using fourth-order ADER-DG
and RKDG schemes on an increasing number of CPUs, from 64 to 16,000.
�e parallel implementation is based on pure MPI and thus each CPU core
corresponds to one MPI rank. �e speedup graph and the parallel e�ciency
as measured on the Phase I system of the SuperMUC supercomputer of the
LRZ in Garching, Germany, are presented in Fig. A3.1. It shows the be�er
MPI scaling of the communication avoiding ADER-DG schemes compared
to conventional RKDG methods.

A4 FO-FCCZ4: a first-order fully covariant Z4 formulation
�e notation uses di�erent decorators to

express the belonging of a particular sym-
bol to a particular reference frame. As a
guide, for a given symbol ϕ, it is
ϕ̃ With tilde: Ordinary 3-symbol in Carte-

sian space

ϕ̊ Ring underlines that these quantities
are relative to the background metric
γ̊ij (i.e., measured in curved space)

ϕ four dimensional symbol
Furthermore, when applicable, this nota-
tion is used:
Xij Tensors, derived from covariant

derivatives

Xij Not transforming as tensors, as de-
rived from partial derivatives

�is section provides a fully covariant formulation of the (�rst order formu-
lation of the) CCZ4 equations (Section 14 on page 52) as a proof of concept,
i.e., it demonstrates the calculations neccessary to derive such a set of equa-
tions. �e concept follows [392]. A discussion about the practicability will
be given in the end.

�e general idea of this approach is to introduce a (non-evolved) back-
ground three-metric γ̊ij which, together with the new evolved metric εij ,
composes the metric γ̃ij in the Cartesian coordinate system,

γ̃ij := γ̊ij + εij . (A4.1)

In the following, a number of calculation rules are derived which de�ne
how the coordinate transformation is de�ned. �ese rules can then be ap-
plied to transform the right hand side/di�erential operator in the FO-CCZ4
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equations to the new coordinate system. Schematically,

∂tQ = R(Q, ∂iQ) → ∂tQ̊ = R(Q̊, ∇̊iQ̊) (A4.2)

To do so, the auxilliary quantities X ∈ {Bij , Ai, Pk, Dijk}, as de�ned in
(14.1), need to be replaced by variantsX which use the covariant derivative,
furthermore the metric itself as well as the contracted Christo�el symbol Γ̂i.
�e time evolution ∂tX = ∂tX + . . . must be determined, furthermore the
replacement law ∂iX = ∂iX + . . . .

�e vector of evolved quantities will then be

QFO-FCCZ4 = (εij ,Kij ,Θ,Λi, α, β
i, bi, Ai,Bij ,Dijk,K, φ,Pk) (A4.3)

whereas the material parameters

Qbackground = (̊γij , Γ̊
i
jk) (A4.4)

need to be stored. Note that the transformations only add algebraic source
terms, and thus the di�erential structure (hyperbolicity) of the FO-FCCZ4
system does not change.

Vector transformation

For a vector, the spatial covariant derivative respective to the ˚̃γ metric is
de�ned as

∇̊iXk = ∂iX
k + Γ̊kilX

l, ∇̊iXk = ∂iXk − Γ̊likXl, (A4.5)

Since Γ̊ is related to the cartesian metric, Γ̊ijk = 0, and therefore ∇̊iBk =

∂iXk , i.e., there is no need to change any occurance of a spatial derivative
on Ai and Pk .

(1,1)-tensor transformation

We recognizeBik = ∂kβ
i being the evolved tensor in the FO-CCZ4 scheme,

while B̊ik := ∇̊kβi will be evolved in FO-FCCZ4. It’s time evolution equa-
tion (14.20) gets another contribution

∂tB̊ik = ∂tB
i
k + Γ̊ilk∂tβ

l, , (A4.6)

where ∂tβl is just the algebraic source term in (14.11). Occurances of spatial
derivatives on Bij have to be replaced according to

∂lB
i
k = ∂lB̊ik − ∂l(̊Γikm)βm − Γ̊ikmB̊ml − Γ̊ikmΓ̊mnlβ

n (A4.7)

(0,3)-tensor transformation

In order to determine the replacement neccessary for the time evolution
∂tDijk and spatial derivatives of ∂lDijk , we de�ne 2D̊ijk := D̊iγ̃jk =

D̊iεjk , so that D̊iεjk = ∂iεjk−Γ̊lijεlk−Γ̊likεlj = D̊ijk . �e time evolution
(14.21) is then replaced by

2 ∂tD̊ijk = 2 ∂tDijk − Γ̊lij∂tεlk − Γ̊lik∂tεlj (A4.8)

Spatial derivatives are however replaced by

2 ∂lDijk = 2 ∂lD̊ijk + ∂l∂iγ̊jk + (∂lΓ̊
m
ij)εmk

+ (∂lΓ̊
m
ik)εmj + Γ̊mij∂lεmk + Γ̊mik∂lεmj ,

(A4.9)

with ∂iεjk = ∇̊iεjk + Γ̊lijεlk + Γ̊likεlj .



appendix 131

Contracted Christoffel symbol

Instead of Γ̂i, the evolution variable in FO-FCCZ4 will be refered to as Λi,
which is de�ned via the di�erence of the Christo�el symbols ∆i

kl := Γ̃ikl−
Γ̊ikl, which transforms like a vector. Its relationship to Γ̂i can be derived as

Λi := ∆i + 2Z̃i = γ̃kl∆i
kl + 2Z̃i

= γ̃kl(Γ̃ikl − Γ̊ikl) + 2Z̃i

= Γ̃i − γ̃klΓ̊ikl + 2Z̃i = Γ̂i − γ̃klΓ̊ikl .
(A4.10)

�erefore, the spatial and tempral derivatives are given by

∂tΓ̂
i = ∂tΛ

i + (∂tγ̃
kl)̊Γikl (A4.11)

∂iΓ̂
j = ∂iΛ

j + 2DijkΓ̊ikl + γ̃kl∂iΓ̂
j
kl (A4.12)

A5 Boundary conditions for Einstein Equations

�is appendix brie�y reviews a number of boundary condition choices adopt-
ed within the implementation of the Einstein solver within the codes dis-
cussed in Chapter II.

When evolving full spacetimes of compact objects (i.e., extended or col-
lapsed ma�er located within a small region around the origin of the coor-
dinate system), boundary conditions must take care of the �nite simulation
domain (sometimes refered to as “�nite volume e�ect”), i.e., the fact that the
physical domain is by concept in�nite while the numerical one is �nite. Any
kind of unphysical e�ects at this boundary, such as re�ection of outgoing
waves, shall be prevented.

In a cartesian grid, the box-like geometry of the boundary renders this
requirement to a complex task. �e grid-level solution is to overcome the
cartesian geometry and to adopt a spherical one in the outer wave zone/near
the boundary. �en, wave-absorbing Riemann solvers can be applied which
have good properties for orthogonally arriving waves.

However, within the Einstein Toolkit, the application of radiative bound-
ary conditions have turned out to be su�ciently successful for long-term
evolutions (such as binary mergers) without signi�cant re�ections at the
boundary. �erefore, the focus within this section is on that candidate, next
to exact Riemann solvers. Other boundary conditions which were success-
fully adopted are periodic boundary conditions (i.e., evolving a la�ice of
black holes) and exact boundary conditions (not successful in black hole
spacetimes, but su�cient for simpler benchmarks).

A5.1 Sommerfeld boundary conditions

�is section shortly reviews a simple version of the Sommerfeld boundary
conditions, also known as radiative boundary conditions. �e key idea of
the “radiative” boundary conditions is to solve a di�erent PDE at the bound-
ary which models radial outgoing scalar waves, independently for every
component of the state vector for a given system. �is PDE can be cast in a
similiar fully non-conservative way as the CCZ4 PDE system itself, i.e.,

∂tQ+B(Q)∇Q = S(Q) . (A5.1)
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A motivational ‘toy” deviation introduces the scalar �eld f = f(~r, t) as a
place holder for a gravitational wave �eld, a component of the metric tensor
or any other �eld from the FO-CCZ4 state vector. For f , the outgoing radial
wave assumption

rf(r, t) = const (A5.2)

is claimed, with r = |~r|. �e time derivative of this assumption gives a
partial di�erential equation:

0 =
d

dt
(rf) = vf + r

(
∂f

∂t
+
∑

i

∂f

∂ri

dri
dt

)
(A5.3)

with a radial velocity v = dr/dt. �e radial wave assumption

dri
dt

= vi ≈ v ei := v
ri

r
(A5.4)

approximates the velocity ~v as a radial velocity v = |~v|. v is now related to
the propagation speed of the f which is the speed of light, i.e. v = c ≡ 1

(however, for the sake of clarity the symbol v is kept for the time being).
One thus ends up with the nonconservative PDE

∂tf + v
ri

r
∂if = −v f

r
(A5.5)

�e outgoing radial wave assumption implies lim r → inff(r) = 0. For
some ADM variables (like α or γii), the limites are f0 6= 0. In such a case,
we de�ne g = f − f0, insert g at the place of f into the PDE and obtain for
the actual f a di�erent source term:

∂tf + v
ri

r
∂if = −f − f0

r
(A5.6)

�is PDE can be seen as the generic case for an outgoing wave with value
f0 at the boundary.

In the CCZ4 system, we solve such a PDE for every single �eld of the 59
�elds. �is gives us 59 non-coupled di�erential equations.

To be explicit, (A5.6) shall be applied as follows: As initial data, the sys-
tem’s solution at or near the boundary is taken. Depending on the numerical
interpretation, one might also extrapolate the solution “to” or “beyond” the
boundary to serve as initial data. �e boundary conditions itself adopted
while integrating (A5.6) are negligable, copy/out�ow BC are appropriate.

Diffusive Boundaries

Solving a di�erent PDE “at the boundary” is a blurry formulation. In a
FD/FV code, where ghostzones are maintained for holding the informa-
tion just outside the simulation domain, (A5.6) can be solved directly in
the ghostzone, if the scheme is at least second order (so the ghostzones are
three-dimensional). In a DG code, where no ghostzones exist, (A5.6) could
be solved evolving the whole last DG patch with the boundary PDE. �is
either shi�s the boundary into the simulation domain or is implemented in
a way that the cell is evolved with the actual PDE (say FO-CCZ4) but the
results of the boundary PDE are read o� the lower-dimensional boundary.
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�is gives rise to decouple the two meanings of the term “boundary”:
�e mathematical simulation boundary does not neccessarily need to cor-
respond to the physical boundary. �e generic formalization of the DG
approach reads as follows: �e prototypic PDE (A5.1) functions could be
composed as a “meta” PDE where any PDE termX ∈ {B,S} is substituted
by

X = αXFO-CCZ4 + (1− α)XBoundary (A5.7)

Here, the scalar �eld α encodes the simulation domain, where α = 1 means
“within” the domain, α = 0 means “outside” the domain and any α ∈ (0, 1)

corresponds to the di�usive interface between inside and outside. An ex-
ample for α(~x) would be the radially symmetric Logistic function

α(~r) =
1

1 + exp {−k(r − r0)} (A5.8)

with r0 encoding the de-facto extend of the physical domain (i.e., a typical
value in a BNS merger would be r0 ∼ 2000M ) and k encodes the width
of the di�usive interface (a typical value would be k = 1). �is idea was
rigorously implemented for linear elasticity equations in [431], but without
solving a PDE outside the physical domain.

A5.2 Exact Riemann Solver for wave-absorbing Boundary Conditions

For the FO-CCZ4 system the full eigenstructure is known, all eigenvalues
and eigenvectors for typical gauge choices are provided at [168]. �e pure
computational costs of evaluating the full eigenvector system of FO-CCZ4
makes it way too expensive to adopt an exact Riemann solver in a numerical
scheme. However, this cost might be worth being spent in the boundary:
Ideally, thanks to AMR, there are only a small number of boundary cells.
�is was implemented in the robustness tests for FO-CCZ4, however greas-
ing waves accumulate in the corners of the rectangular domains.

A6 Extracting gravitational waves

�is appendix section is a tiny review of standard de�nitions in gravita-
tional wave de�nitions (continuum) and their extraction in numerical sim-
ulations. For reviews, see e.g., [65, 80, 133].

Definitions

Gravitational waves are de�ned within linearized gravity, i.e., where the
metric γµν = ηµν + hµν is the sum of the (Minkowski) vacuum ηµν and
a perturbation hµν which is small (|h| � 1). �e wave equations for the
perturbation are found a�er de�ning the trace reversed perturbation h̄ =

h− 1
2ηh

α
α and imposing the Coulomb gauge∇µh̄µν = 0; they are given by

the EFE∇α∇αh̄µν = �h̄µν = 0, with the covariant d’Alambert operator�.
�e remaining gauge freedom allows to �x transverse metric perturbations
(yielding in a transverse traceless formulation), so that h̄ = h. In Cartesian
coordinates, a gravitational wave (GW) propagating in z direction can then
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be wri�en as

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


 .

Here, the scalars h+ and h× are identi�ed as the two polarization states of
the wave. Typically, they are collected in a complex �eld y := h++ih−. �e
GW strain is then de�ned as ξi = 1

2∂
2
t hijξ

j . �e experimentally accessible
relative displacement δξ/ξ ∼ h is proportional to h.

Implementation

�e gravitational wave strains h+ and h− can be computed online in a time
evolution code. At large distance from a central massive object (formally at
in�nity in Schwarzschild coordinates), typically at radius R = O(500)M ,
where M is the mass of the spacetime, a curvature invariant (Weyl scalar
Ψ4, in EinsteinToolkit following [44, 339]) is derived from the spacetime
(i.e., from the Riemann or Weyl tensor which is derived from the 4-metric
or the ADM quantities, see also [113, 338] for de�nitions). A spherical har-
monic mode decomposition is then performed, where the GW DOF are en-
coded in the l = 2,m = 2 mode of Ψlm

4 .
In a postprocessing step, the PyCactusET so�ware is used for time in-

tegrating the strain h+,× from Ψ4, following [382]. Figure 29.1 on page 97
shows an example of a GW signal from a binary neutron star merger ob-
tained with this method, with a cuto� angular frequency w0 = 0.02 for
�xed frequency iteration.
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A7 Adjusted GUP profiles

Figures A7.1 and A7.2 are provided as an alternative to display Figure 40.4
on page 120. �e di�erent metric functions g00(M) are plo�ed here in a
single panel (for di�erent M ). �e units are given in such a way that the
large BH remnant is (arbitarily) set to r1 = r∗.
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Figure A7.1: Upper panel: Metric compo-
nent g00 for the adjusted GUP in n = 8

spatial dimensions over radius, for di�er-
ent masses (each line corresponds to a par-
ticular mass). Lower panel: Hawking tem-
perature for a given horizon rH for the
adjusted GUP in n = 8 spatial dimen-
sions, compared to the corresponding or-
dinary temperature of the Schwarzschild-
Tangherlini metric. Radii are given in fun-
damental Planck units r∗, β is tuned for
self-completeness (see main text).
Here, the two panels are put ontop of each
other with a single radius axis, which how-
ever has a di�erent meaning in the di�erent
panels. �e diagram can be read as that for
a metric pro�le (upper panel), at the outer
horizon by going to the bo�om panel, the
temperature can be read o�.
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Figure A7.2: A diagram similar to Fig-
ure A7.1 but in n = 9 spatial dimensions.
Adding only one dimension made the situa-
tion much more dramatic, as there is a third
self-complete region and the regions are
seperated by very high temperature peaks
∼ 104T∗. It is likely that the semiclassical
description fails to describe the inner part
of the black hole already below r < r∗.
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B3 List of computer codes and libraries

�is section lists codes which where used within this work, and adresses of internet websites where it is possible to
download them.

B3.1 Initial data codes

�e following codes are a selection of codes which I modi�ed in order to be read in by the ExaHyPE code.

Lorene An extensive code and library for creating general-relativistic initial data for various compact objects, such as
single rotating (magnetized) stars and binary neutron stars. Whenever binary neutron star systems were evolved
in this work, the initial data stems from Lorene.
�e code is available at lorene.obspm.fr or bitbucket.org/relastro/lorene as well as bitbucket.org/relastro/lorene-
pointwiseexport.

RNSID A fast code for creating rotating neutron star initial data. �is code is also part of the Einstein Toolkit,
available at bitbucket.org/einsteintoolkit/einsteininitialdata but also at bitbucket.org/relastro/rnsid standalone

ToriID A code for creating torus initial data (hydrodynamic quantities) on a given spacetime from a compact object.
�is code is available at bitbucket.org/relastro/toriid-standalone.

TOV Solvers Various codes for solving the TOV equations were used in this work, for instance the TOVSolver from
EinsteinToolkit which is available as a standalone version at bitbucket.org/relastro/tovsolver hybrid. Other codes
used are the closed soure codes PizzaTOV and MargheritaTOV.

TwoPunctures �e TwoPunctures code allows to create a spacetime with an arbitrary number of puncture black
holes. A version is available at bitbucket.org/relastro/twopunctures-standalone.

B3.2 Time evolution codes

EinsteinToolkit �e Einstein toolkit is a mature and extensive code collection which is available as open source
at einsteintoolkit.org. It is a modular code based on Cactus. �e Carpet code [220, 401, 403] provides by de-

https://lorene.obspm.fr/
https://bitbucket.org/relastro/lorene
https://bitbucket.org/relastro/lorene-pointwiseexport
https://bitbucket.org/relastro/lorene-pointwiseexport
https://bitbucket.org/einsteintoolkit/einsteininitialdata
https://bitbucket.org/relastro/rnsid_standalone
https://bitbucket.org/relastro/toriid-standalone
https://bitbucket.org/relastro/tovsolver_hybrid/
https://bitbucket.org/relastro/twopunctures-standalone
https://einsteintoolkit.org/
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fault the computational grid/meshing. �e GRHydro and IllinoisGRMHD are two open source relativistic hydro-
dynamic codes which are part of the Einstein toolkit. Howveer, there are also a large number of proprietary
extensions/modules, such as any recent instance of the Whisky code.

WhiskyTHC �e Whisky templated hydrodynamics code [369, 372]. It is the merger of various codes for evolving
hydrodynamics, such as the Pizza code. It gets it name from templated C++ and is a high order FD/FV code for
general relativist hydrodynamics. It is supposed to be used within the Einstein toolkit. It is closed source.

ExaHyPE ExaHyPE is a next generation ADER-DG code with dynamic AMR. Its computational grid/meshing is
provided by the Peano framework [109, 456]. It is available at exahype.eu and/or peano-framework.org.

SVEC �e State vector enhancement code is a general relativistic magnetohydrodynamics code which can provide
the PDE parts within the ExaHyPE framework. �e code is available at bitbucket.org/svek/svec/ but also part of
ExaHyPE.

Antelope Antelope is a code for solving Einsteins equations in a MoL framework, as provided by the Einstein toolkit.
It has di�erent formulations of Einsteins equations implemented (Z4, Z4c, CCZ4, FO-CCZ4) and is based on the
TensorTemplates framework. At the time being, Antelope is closed source.

B4 List of co-authored papers

In the following, all co-authored papers wri�en within the relativistic astrophysics group in Frankfurt are listed,
with my individual contributions. See also page 169 for my curriculum vitae which lists all peer reviewed papers,
i.e., also single authored publications and publications wri�en not within the relativistic astrophysics group.

[168] FO-CCZ4 (Chapter II): Parallel/comparative system matrix analysis with Mathematica and Maple, both for
a preliminary FO-Z4 candidate as the FO-CCZ4 system, implementation and code generation for C++/Fortran/-
TensorTemplates, running benchmarks and tests on di�erent supercomputers, producing �gures and texts for the
paper, revised and improved article during review.

[196] ADER-GRMHD (Chapter III): Implementation and tests with Fortran/C++ version of PDE system, producing
texts for the paper, revised and improved article during review.

[274] BNS Lifetimes (Chapter IV): Operating over 200 (completed) binary neutron star merger simulations on dif-
ferent supercomputers, Interpreting the data, Writing an analysis code and contributing to a comparative second
one maintained by the coworker, Producing �gures and text for the paper, Running a convergence study, testing
di�erent parameter spaces (like headon mergers), revised and improved article during review.

http://exahype.eu/
http://www.peano-framework.org/
https://bitbucket.org/svek/svec/
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[85] C. Bona, T. Ledvinka, C. Palenzuela, and M. Zácek. General-covariant evolution formalism for numerical
relativity. Phys. Rev. D, 67(10):104005, May 2003. (Cited on pages 13, 50, 53, and 61.)



bibliography 145
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[306] F. Lö�er, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. O�, E. Schne�er,
G. Allen, M. Campanelli, and P. Laguna. �e Einstein Toolkit: a community computational infrastructure for
relativistic astrophysics. Class. �antum Grav., 29(11):115001, June 2012. (Cited on pages 69 and 96.)

[307] Rainald Löhner. An adaptive �nite element scheme for transient problems in CFD. Computer Methods in
Applied Mechanics and Engineering, 61(3):323 – 338, 1987. (Cited on page 39.)

[308] F. D. Lora-Clavijo, A. Cruz-Osorio, and F. S. Guzmán. CAFE: A New Relativistic MHD Code. Astrophys. J.
Suppl., 218(2):24, 2015. (Cited on page 14.)

[309] Malcolm A. H. MacCallum. Computer algebra in gravity research. Living Reviews in Relativity, 21(1):6, Aug
2018. (Cited on page 22.)

[310] Michele Maggiore. A Generalized uncertainty principle in quantum gravity. Phys. Le�., B304:65–69, 1993.
(Cited on page 16.)

[311] R. B. Mann and P. Nicolini. Cosmological production of noncommutative black holes. Phys. Rev., D84:064014,
2011. (Cited on page 119.)

[312] R. B. Mann and S. F. Ross. Cosmological production of charged black hole pairs. Phys.Rev., D52:2254–2265,
1995. (Cited on page 119.)

[313] Robert B. Mann. Black holes of negative mass. Class. �ant. Grav., 14:2927–2930, 1997. (Cited on page 118.)

[314] B. Margalit and B. D. Metzger. Constraining the Maximum Mass of Neutron Stars from Multi-messenger
Observations of GW170817. Astrophys. J. Le�., 850:L19, December 2017. (Cited on page 15.)
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